Server and Client Side update
This commit is contained in:
@@ -1,24 +1,20 @@
|
||||
import os
|
||||
import base64
|
||||
import json
|
||||
import asyncio
|
||||
import torch
|
||||
import torchaudio
|
||||
import numpy as np
|
||||
import io
|
||||
import whisperx
|
||||
from io import BytesIO
|
||||
from typing import List, Dict, Any, Optional
|
||||
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
|
||||
from fastapi.responses import HTMLResponse, FileResponse
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
from flask import Flask, request, send_from_directory, Response
|
||||
from flask_cors import CORS
|
||||
from flask_socketio import SocketIO, emit, disconnect
|
||||
from generator import load_csm_1b, Segment
|
||||
import uvicorn
|
||||
import time
|
||||
import gc
|
||||
from collections import deque
|
||||
from threading import Lock
|
||||
|
||||
# Select device
|
||||
if torch.cuda.is_available():
|
||||
@@ -36,73 +32,39 @@ print("Loading WhisperX model...")
|
||||
asr_model = whisperx.load_model("medium", device, compute_type="float16")
|
||||
print("WhisperX model loaded!")
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
# Add CORS middleware to allow cross-origin requests
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"], # Allow all origins in development
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
# Silence detection parameters
|
||||
SILENCE_THRESHOLD = 0.01 # Adjust based on your audio normalization
|
||||
SILENCE_DURATION_SEC = 1.0 # How long silence must persist
|
||||
|
||||
# Define the base directory
|
||||
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
# Mount a static files directory if you have any static assets like CSS or JS
|
||||
static_dir = os.path.join(base_dir, "static")
|
||||
os.makedirs(static_dir, exist_ok=True) # Create the directory if it doesn't exist
|
||||
app.mount("/static", StaticFiles(directory=static_dir), name="static")
|
||||
os.makedirs(static_dir, exist_ok=True)
|
||||
|
||||
# Define route to serve index.html as the main page
|
||||
@app.get("/", response_class=HTMLResponse)
|
||||
async def get_index():
|
||||
try:
|
||||
with open(os.path.join(base_dir, "index.html"), "r") as f:
|
||||
return HTMLResponse(content=f.read())
|
||||
except FileNotFoundError:
|
||||
return HTMLResponse(content="<html><body><h1>Error: index.html not found</h1></body></html>")
|
||||
# Setup Flask
|
||||
app = Flask(__name__)
|
||||
CORS(app)
|
||||
socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet')
|
||||
|
||||
# Add a favicon endpoint (optional, but good to have)
|
||||
@app.get("/favicon.ico")
|
||||
async def get_favicon():
|
||||
favicon_path = os.path.join(static_dir, "favicon.ico")
|
||||
if os.path.exists(favicon_path):
|
||||
return FileResponse(favicon_path)
|
||||
else:
|
||||
return HTMLResponse(status_code=204) # No content
|
||||
|
||||
# Connection manager to handle multiple clients
|
||||
class ConnectionManager:
|
||||
def __init__(self):
|
||||
self.active_connections: List[WebSocket] = []
|
||||
|
||||
async def connect(self, websocket: WebSocket):
|
||||
await websocket.accept()
|
||||
self.active_connections.append(websocket)
|
||||
|
||||
def disconnect(self, websocket: WebSocket):
|
||||
self.active_connections.remove(websocket)
|
||||
|
||||
manager = ConnectionManager()
|
||||
|
||||
# Silence detection parameters
|
||||
SILENCE_THRESHOLD = 0.01 # Adjust based on your audio normalization
|
||||
SILENCE_DURATION_SEC = 1.0 # How long silence must persist to be considered "stopped talking"
|
||||
# Socket connection management
|
||||
thread = None
|
||||
thread_lock = Lock()
|
||||
active_clients = {} # Map client_id to client context
|
||||
|
||||
# Helper function to convert audio data
|
||||
async def decode_audio_data(audio_data: str) -> torch.Tensor:
|
||||
def decode_audio_data(audio_data: str) -> torch.Tensor:
|
||||
"""Decode base64 audio data to a torch tensor"""
|
||||
try:
|
||||
# Extract the actual base64 content
|
||||
if ',' in audio_data:
|
||||
audio_data = audio_data.split(',')[1]
|
||||
|
||||
# Decode base64 audio data
|
||||
binary_data = base64.b64decode(audio_data.split(',')[1] if ',' in audio_data else audio_data)
|
||||
binary_data = base64.b64decode(audio_data)
|
||||
|
||||
# Save to a temporary WAV file first
|
||||
temp_file = BytesIO(binary_data)
|
||||
|
||||
# Load audio from binary data, explicitly specifying the format
|
||||
audio_tensor, sample_rate = torchaudio.load(temp_file, format="wav")
|
||||
# Load audio from binary data
|
||||
with BytesIO(binary_data) as temp_file:
|
||||
audio_tensor, sample_rate = torchaudio.load(temp_file, format="wav")
|
||||
|
||||
# Resample if needed
|
||||
if sample_rate != generator.sample_rate:
|
||||
@@ -121,7 +83,7 @@ async def decode_audio_data(audio_data: str) -> torch.Tensor:
|
||||
return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence
|
||||
|
||||
|
||||
async def encode_audio_data(audio_tensor: torch.Tensor) -> str:
|
||||
def encode_audio_data(audio_tensor: torch.Tensor) -> str:
|
||||
"""Encode torch tensor audio to base64 string"""
|
||||
buf = BytesIO()
|
||||
torchaudio.save(buf, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
|
||||
@@ -130,40 +92,36 @@ async def encode_audio_data(audio_tensor: torch.Tensor) -> str:
|
||||
return f"data:audio/wav;base64,{audio_base64}"
|
||||
|
||||
|
||||
async def transcribe_audio(audio_tensor: torch.Tensor) -> str:
|
||||
def transcribe_audio(audio_tensor: torch.Tensor) -> str:
|
||||
"""Transcribe audio using WhisperX"""
|
||||
try:
|
||||
# Save the tensor to a temporary file
|
||||
temp_file = BytesIO()
|
||||
torchaudio.save(temp_file, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
|
||||
temp_file.seek(0)
|
||||
|
||||
# Create a temporary file on disk (WhisperX requires a file path)
|
||||
temp_path = "temp_audio.wav"
|
||||
with open(temp_path, "wb") as f:
|
||||
f.write(temp_file.read())
|
||||
temp_path = os.path.join(base_dir, "temp_audio.wav")
|
||||
torchaudio.save(temp_path, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate)
|
||||
|
||||
# Load and transcribe the audio
|
||||
audio = whisperx.load_audio(temp_path)
|
||||
result = asr_model.transcribe(audio, batch_size=16)
|
||||
|
||||
# Clean up
|
||||
os.remove(temp_path)
|
||||
if os.path.exists(temp_path):
|
||||
os.remove(temp_path)
|
||||
|
||||
# Get the transcription text
|
||||
if result["segments"] and len(result["segments"]) > 0:
|
||||
# Combine all segments
|
||||
transcription = " ".join([segment["text"] for segment in result["segments"]])
|
||||
print(f"Transcription: {transcription}")
|
||||
return transcription.strip()
|
||||
else:
|
||||
return ""
|
||||
except Exception as e:
|
||||
print(f"Error in transcription: {str(e)}")
|
||||
if os.path.exists("temp_audio.wav"):
|
||||
os.remove("temp_audio.wav")
|
||||
return ""
|
||||
|
||||
|
||||
async def generate_response(text: str, conversation_history: List[Segment]) -> str:
|
||||
def generate_response(text: str, conversation_history: List[Segment]) -> str:
|
||||
"""Generate a contextual response based on the transcribed text"""
|
||||
# Simple response logic - can be replaced with a more sophisticated LLM in the future
|
||||
responses = {
|
||||
@@ -191,311 +149,319 @@ async def generate_response(text: str, conversation_history: List[Segment]) -> s
|
||||
else:
|
||||
return f"I understand you said '{text}'. That's interesting! Can you tell me more about that?"
|
||||
|
||||
# Flask routes for serving static content
|
||||
@app.route('/')
|
||||
def index():
|
||||
return send_from_directory(base_dir, 'index.html')
|
||||
|
||||
@app.websocket("/ws")
|
||||
async def websocket_endpoint(websocket: WebSocket):
|
||||
await manager.connect(websocket)
|
||||
context_segments = [] # Store conversation context
|
||||
streaming_buffer = [] # Buffer for streaming audio chunks
|
||||
is_streaming = False
|
||||
@app.route('/favicon.ico')
|
||||
def favicon():
|
||||
if os.path.exists(os.path.join(static_dir, 'favicon.ico')):
|
||||
return send_from_directory(static_dir, 'favicon.ico')
|
||||
return Response(status=204)
|
||||
|
||||
@app.route('/static/<path:path>')
|
||||
def serve_static(path):
|
||||
return send_from_directory(static_dir, path)
|
||||
|
||||
# Socket.IO event handlers
|
||||
@socketio.on('connect')
|
||||
def handle_connect():
|
||||
client_id = request.sid
|
||||
print(f"Client connected: {client_id}")
|
||||
|
||||
# Variables for silence detection
|
||||
last_active_time = time.time()
|
||||
is_silence = False
|
||||
energy_window = deque(maxlen=10) # For tracking recent audio energy
|
||||
# Initialize client context
|
||||
active_clients[client_id] = {
|
||||
'context_segments': [],
|
||||
'streaming_buffer': [],
|
||||
'is_streaming': False,
|
||||
'is_silence': False,
|
||||
'last_active_time': time.time(),
|
||||
'energy_window': deque(maxlen=10)
|
||||
}
|
||||
|
||||
emit('status', {'type': 'connected', 'message': 'Connected to server'})
|
||||
|
||||
@socketio.on('disconnect')
|
||||
def handle_disconnect():
|
||||
client_id = request.sid
|
||||
if client_id in active_clients:
|
||||
del active_clients[client_id]
|
||||
print(f"Client disconnected: {client_id}")
|
||||
|
||||
@socketio.on('generate')
|
||||
def handle_generate(data):
|
||||
client_id = request.sid
|
||||
if client_id not in active_clients:
|
||||
emit('error', {'message': 'Client not registered'})
|
||||
return
|
||||
|
||||
try:
|
||||
while True:
|
||||
# Receive JSON data from client
|
||||
data = await websocket.receive_text()
|
||||
request = json.loads(data)
|
||||
|
||||
action = request.get("action")
|
||||
|
||||
if action == "generate":
|
||||
try:
|
||||
text = request.get("text", "")
|
||||
speaker_id = request.get("speaker", 0)
|
||||
|
||||
# Generate audio response
|
||||
print(f"Generating audio for: '{text}' with speaker {speaker_id}")
|
||||
audio_tensor = generator.generate(
|
||||
text=text,
|
||||
speaker=speaker_id,
|
||||
context=context_segments,
|
||||
max_audio_length_ms=10_000,
|
||||
)
|
||||
|
||||
# Add to conversation context
|
||||
context_segments.append(Segment(text=text, speaker=speaker_id, audio=audio_tensor))
|
||||
|
||||
# Convert audio to base64 and send back to client
|
||||
audio_base64 = await encode_audio_data(audio_tensor)
|
||||
await websocket.send_json({
|
||||
"type": "audio_response",
|
||||
"audio": audio_base64
|
||||
})
|
||||
except Exception as e:
|
||||
print(f"Error generating audio: {str(e)}")
|
||||
await websocket.send_json({
|
||||
"type": "error",
|
||||
"message": f"Error generating audio: {str(e)}"
|
||||
})
|
||||
|
||||
elif action == "add_to_context":
|
||||
try:
|
||||
text = request.get("text", "")
|
||||
speaker_id = request.get("speaker", 0)
|
||||
audio_data = request.get("audio", "")
|
||||
|
||||
# Convert received audio to tensor
|
||||
audio_tensor = await decode_audio_data(audio_data)
|
||||
|
||||
# Add to conversation context
|
||||
context_segments.append(Segment(text=text, speaker=speaker_id, audio=audio_tensor))
|
||||
|
||||
await websocket.send_json({
|
||||
"type": "context_updated",
|
||||
"message": "Audio added to context"
|
||||
})
|
||||
except Exception as e:
|
||||
print(f"Error adding to context: {str(e)}")
|
||||
await websocket.send_json({
|
||||
"type": "error",
|
||||
"message": f"Error processing audio: {str(e)}"
|
||||
})
|
||||
|
||||
elif action == "clear_context":
|
||||
context_segments = []
|
||||
await websocket.send_json({
|
||||
"type": "context_updated",
|
||||
"message": "Context cleared"
|
||||
})
|
||||
|
||||
elif action == "stream_audio":
|
||||
try:
|
||||
speaker_id = request.get("speaker", 0)
|
||||
audio_data = request.get("audio", "")
|
||||
|
||||
# Convert received audio to tensor
|
||||
audio_chunk = await decode_audio_data(audio_data)
|
||||
|
||||
# Start streaming mode if not already started
|
||||
if not is_streaming:
|
||||
is_streaming = True
|
||||
streaming_buffer = []
|
||||
energy_window.clear()
|
||||
is_silence = False
|
||||
last_active_time = time.time()
|
||||
print(f"Streaming started with speaker ID: {speaker_id}")
|
||||
await websocket.send_json({
|
||||
"type": "streaming_status",
|
||||
"status": "started"
|
||||
})
|
||||
|
||||
# Calculate audio energy for silence detection
|
||||
chunk_energy = torch.mean(torch.abs(audio_chunk)).item()
|
||||
energy_window.append(chunk_energy)
|
||||
avg_energy = sum(energy_window) / len(energy_window)
|
||||
|
||||
# Debug audio levels
|
||||
if len(energy_window) >= 5: # Only start printing after we have enough samples
|
||||
if avg_energy > SILENCE_THRESHOLD:
|
||||
print(f"[AUDIO] Active sound detected - Energy: {avg_energy:.6f} (threshold: {SILENCE_THRESHOLD})")
|
||||
else:
|
||||
print(f"[AUDIO] Silence detected - Energy: {avg_energy:.6f} (threshold: {SILENCE_THRESHOLD})")
|
||||
|
||||
# Check if audio is silent
|
||||
current_silence = avg_energy < SILENCE_THRESHOLD
|
||||
|
||||
# Track silence transition
|
||||
if not is_silence and current_silence:
|
||||
# Transition to silence
|
||||
is_silence = True
|
||||
last_active_time = time.time()
|
||||
print("[STREAM] Transition to silence detected")
|
||||
elif is_silence and not current_silence:
|
||||
# User started talking again
|
||||
is_silence = False
|
||||
print("[STREAM] User resumed speaking")
|
||||
|
||||
# Add chunk to buffer regardless of silence state
|
||||
streaming_buffer.append(audio_chunk)
|
||||
|
||||
# Debug buffer size periodically
|
||||
if len(streaming_buffer) % 10 == 0:
|
||||
print(f"[BUFFER] Current size: {len(streaming_buffer)} chunks, ~{len(streaming_buffer)/5:.1f} seconds")
|
||||
|
||||
# Check if silence has persisted long enough to consider "stopped talking"
|
||||
silence_elapsed = time.time() - last_active_time
|
||||
|
||||
if is_silence and silence_elapsed >= SILENCE_DURATION_SEC and len(streaming_buffer) > 0:
|
||||
# User has stopped talking - process the collected audio
|
||||
print(f"[STREAM] Processing audio after {silence_elapsed:.2f}s of silence")
|
||||
print(f"[STREAM] Processing {len(streaming_buffer)} audio chunks (~{len(streaming_buffer)/5:.1f} seconds)")
|
||||
|
||||
full_audio = torch.cat(streaming_buffer, dim=0)
|
||||
|
||||
# Log audio statistics
|
||||
audio_duration = len(full_audio) / generator.sample_rate
|
||||
audio_min = torch.min(full_audio).item()
|
||||
audio_max = torch.max(full_audio).item()
|
||||
audio_mean = torch.mean(full_audio).item()
|
||||
print(f"[AUDIO] Processed audio - Duration: {audio_duration:.2f}s, Min: {audio_min:.4f}, Max: {audio_max:.4f}, Mean: {audio_mean:.4f}")
|
||||
|
||||
# Process with WhisperX speech-to-text
|
||||
print("[ASR] Starting transcription with WhisperX...")
|
||||
transcribed_text = await transcribe_audio(full_audio)
|
||||
|
||||
# Log the transcription
|
||||
print(f"[ASR] Transcribed text: '{transcribed_text}'")
|
||||
|
||||
# Add to conversation context
|
||||
if transcribed_text:
|
||||
print(f"[DIALOG] Adding user utterance to context: '{transcribed_text}'")
|
||||
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
||||
context_segments.append(user_segment)
|
||||
|
||||
# Generate a contextual response
|
||||
print("[DIALOG] Generating response...")
|
||||
response_text = await generate_response(transcribed_text, context_segments)
|
||||
print(f"[DIALOG] Response text: '{response_text}'")
|
||||
|
||||
# Send the transcribed text to client
|
||||
await websocket.send_json({
|
||||
"type": "transcription",
|
||||
"text": transcribed_text
|
||||
})
|
||||
|
||||
# Generate audio for the response
|
||||
print("[TTS] Generating speech for response...")
|
||||
audio_tensor = generator.generate(
|
||||
text=response_text,
|
||||
speaker=1 if speaker_id == 0 else 0, # Use opposite speaker
|
||||
context=context_segments,
|
||||
max_audio_length_ms=10_000,
|
||||
)
|
||||
print(f"[TTS] Generated audio length: {len(audio_tensor)/generator.sample_rate:.2f}s")
|
||||
|
||||
# Add response to context
|
||||
ai_segment = Segment(
|
||||
text=response_text,
|
||||
speaker=1 if speaker_id == 0 else 0,
|
||||
audio=audio_tensor
|
||||
)
|
||||
context_segments.append(ai_segment)
|
||||
print(f"[DIALOG] Context now has {len(context_segments)} segments")
|
||||
|
||||
# Convert audio to base64 and send back to client
|
||||
audio_base64 = await encode_audio_data(audio_tensor)
|
||||
print("[STREAM] Sending audio response to client")
|
||||
await websocket.send_json({
|
||||
"type": "audio_response",
|
||||
"text": response_text,
|
||||
"audio": audio_base64
|
||||
})
|
||||
else:
|
||||
print("[ASR] Transcription failed or returned empty text")
|
||||
# If transcription failed, send a generic response
|
||||
await websocket.send_json({
|
||||
"type": "error",
|
||||
"message": "Sorry, I couldn't understand what you said. Could you try again?"
|
||||
})
|
||||
|
||||
# Clear buffer and reset silence detection
|
||||
streaming_buffer = []
|
||||
energy_window.clear()
|
||||
is_silence = False
|
||||
last_active_time = time.time()
|
||||
print("[STREAM] Buffer cleared, ready for next utterance")
|
||||
|
||||
# If buffer gets too large without silence, process it anyway
|
||||
# This prevents memory issues with very long streams
|
||||
elif len(streaming_buffer) >= 30: # ~6 seconds of audio at 5 chunks/sec
|
||||
print("[BUFFER] Maximum buffer size reached, processing audio")
|
||||
full_audio = torch.cat(streaming_buffer, dim=0)
|
||||
|
||||
# Process with WhisperX speech-to-text
|
||||
print("[ASR] Starting forced transcription of long audio...")
|
||||
transcribed_text = await transcribe_audio(full_audio)
|
||||
|
||||
if transcribed_text:
|
||||
print(f"[ASR] Transcribed long audio: '{transcribed_text}'")
|
||||
context_segments.append(Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio))
|
||||
|
||||
# Send the transcribed text to client
|
||||
await websocket.send_json({
|
||||
"type": "transcription",
|
||||
"text": transcribed_text + " (processing continued speech...)"
|
||||
})
|
||||
else:
|
||||
print("[ASR] No transcription from long audio")
|
||||
|
||||
streaming_buffer = []
|
||||
print("[BUFFER] Buffer cleared due to size limit")
|
||||
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Processing streaming audio: {str(e)}")
|
||||
# Print traceback for more detailed error information
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
await websocket.send_json({
|
||||
"type": "error",
|
||||
"message": f"Error processing streaming audio: {str(e)}"
|
||||
})
|
||||
|
||||
elif action == "stop_streaming":
|
||||
is_streaming = False
|
||||
if streaming_buffer and len(streaming_buffer) > 5: # Only process if there's meaningful audio
|
||||
# Process any remaining audio in the buffer
|
||||
full_audio = torch.cat(streaming_buffer, dim=0)
|
||||
|
||||
# Process with WhisperX speech-to-text
|
||||
transcribed_text = await transcribe_audio(full_audio)
|
||||
|
||||
if transcribed_text:
|
||||
context_segments.append(Segment(text=transcribed_text, speaker=request.get("speaker", 0), audio=full_audio))
|
||||
|
||||
# Send the transcribed text to client
|
||||
await websocket.send_json({
|
||||
"type": "transcription",
|
||||
"text": transcribed_text
|
||||
})
|
||||
|
||||
streaming_buffer = []
|
||||
await websocket.send_json({
|
||||
"type": "streaming_status",
|
||||
"status": "stopped"
|
||||
})
|
||||
|
||||
except WebSocketDisconnect:
|
||||
manager.disconnect(websocket)
|
||||
print("Client disconnected")
|
||||
text = data.get('text', '')
|
||||
speaker_id = data.get('speaker', 0)
|
||||
|
||||
print(f"Generating audio for: '{text}' with speaker {speaker_id}")
|
||||
|
||||
# Generate audio response
|
||||
audio_tensor = generator.generate(
|
||||
text=text,
|
||||
speaker=speaker_id,
|
||||
context=active_clients[client_id]['context_segments'],
|
||||
max_audio_length_ms=10_000,
|
||||
)
|
||||
|
||||
# Add to conversation context
|
||||
active_clients[client_id]['context_segments'].append(
|
||||
Segment(text=text, speaker=speaker_id, audio=audio_tensor)
|
||||
)
|
||||
|
||||
# Convert audio to base64 and send back to client
|
||||
audio_base64 = encode_audio_data(audio_tensor)
|
||||
emit('audio_response', {
|
||||
'type': 'audio_response',
|
||||
'audio': audio_base64
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {str(e)}")
|
||||
try:
|
||||
await websocket.send_json({
|
||||
"type": "error",
|
||||
"message": str(e)
|
||||
})
|
||||
except:
|
||||
pass
|
||||
manager.disconnect(websocket)
|
||||
print(f"Error generating audio: {str(e)}")
|
||||
emit('error', {
|
||||
'type': 'error',
|
||||
'message': f"Error generating audio: {str(e)}"
|
||||
})
|
||||
|
||||
@socketio.on('add_to_context')
|
||||
def handle_add_to_context(data):
|
||||
client_id = request.sid
|
||||
if client_id not in active_clients:
|
||||
emit('error', {'message': 'Client not registered'})
|
||||
return
|
||||
|
||||
try:
|
||||
text = data.get('text', '')
|
||||
speaker_id = data.get('speaker', 0)
|
||||
audio_data = data.get('audio', '')
|
||||
|
||||
# Convert received audio to tensor
|
||||
audio_tensor = decode_audio_data(audio_data)
|
||||
|
||||
# Add to conversation context
|
||||
active_clients[client_id]['context_segments'].append(
|
||||
Segment(text=text, speaker=speaker_id, audio=audio_tensor)
|
||||
)
|
||||
|
||||
emit('context_updated', {
|
||||
'type': 'context_updated',
|
||||
'message': 'Audio added to context'
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error adding to context: {str(e)}")
|
||||
emit('error', {
|
||||
'type': 'error',
|
||||
'message': f"Error processing audio: {str(e)}"
|
||||
})
|
||||
|
||||
@socketio.on('clear_context')
|
||||
def handle_clear_context():
|
||||
client_id = request.sid
|
||||
if client_id in active_clients:
|
||||
active_clients[client_id]['context_segments'] = []
|
||||
|
||||
emit('context_updated', {
|
||||
'type': 'context_updated',
|
||||
'message': 'Context cleared'
|
||||
})
|
||||
|
||||
@socketio.on('stream_audio')
|
||||
def handle_stream_audio(data):
|
||||
client_id = request.sid
|
||||
if client_id not in active_clients:
|
||||
emit('error', {'message': 'Client not registered'})
|
||||
return
|
||||
|
||||
client = active_clients[client_id]
|
||||
|
||||
try:
|
||||
speaker_id = data.get('speaker', 0)
|
||||
audio_data = data.get('audio', '')
|
||||
|
||||
# Convert received audio to tensor
|
||||
audio_chunk = decode_audio_data(audio_data)
|
||||
|
||||
# Start streaming mode if not already started
|
||||
if not client['is_streaming']:
|
||||
client['is_streaming'] = True
|
||||
client['streaming_buffer'] = []
|
||||
client['energy_window'].clear()
|
||||
client['is_silence'] = False
|
||||
client['last_active_time'] = time.time()
|
||||
print(f"[{client_id}] Streaming started with speaker ID: {speaker_id}")
|
||||
emit('streaming_status', {
|
||||
'type': 'streaming_status',
|
||||
'status': 'started'
|
||||
})
|
||||
|
||||
# Calculate audio energy for silence detection
|
||||
chunk_energy = torch.mean(torch.abs(audio_chunk)).item()
|
||||
client['energy_window'].append(chunk_energy)
|
||||
avg_energy = sum(client['energy_window']) / len(client['energy_window'])
|
||||
|
||||
# Check if audio is silent
|
||||
current_silence = avg_energy < SILENCE_THRESHOLD
|
||||
|
||||
# Track silence transition
|
||||
if not client['is_silence'] and current_silence:
|
||||
# Transition to silence
|
||||
client['is_silence'] = True
|
||||
client['last_active_time'] = time.time()
|
||||
elif client['is_silence'] and not current_silence:
|
||||
# User started talking again
|
||||
client['is_silence'] = False
|
||||
|
||||
# Add chunk to buffer regardless of silence state
|
||||
client['streaming_buffer'].append(audio_chunk)
|
||||
|
||||
# Check if silence has persisted long enough to consider "stopped talking"
|
||||
silence_elapsed = time.time() - client['last_active_time']
|
||||
|
||||
if client['is_silence'] and silence_elapsed >= SILENCE_DURATION_SEC and len(client['streaming_buffer']) > 0:
|
||||
# User has stopped talking - process the collected audio
|
||||
print(f"[{client_id}] Processing audio after {silence_elapsed:.2f}s of silence")
|
||||
|
||||
full_audio = torch.cat(client['streaming_buffer'], dim=0)
|
||||
|
||||
# Process with WhisperX speech-to-text
|
||||
print(f"[{client_id}] Starting transcription with WhisperX...")
|
||||
transcribed_text = transcribe_audio(full_audio)
|
||||
|
||||
# Log the transcription
|
||||
print(f"[{client_id}] Transcribed text: '{transcribed_text}'")
|
||||
|
||||
# Add to conversation context
|
||||
if transcribed_text:
|
||||
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
||||
client['context_segments'].append(user_segment)
|
||||
|
||||
# Generate a contextual response
|
||||
response_text = generate_response(transcribed_text, client['context_segments'])
|
||||
|
||||
# Send the transcribed text to client
|
||||
emit('transcription', {
|
||||
'type': 'transcription',
|
||||
'text': transcribed_text
|
||||
})
|
||||
|
||||
# Generate audio for the response
|
||||
audio_tensor = generator.generate(
|
||||
text=response_text,
|
||||
speaker=1 if speaker_id == 0 else 0, # Use opposite speaker
|
||||
context=client['context_segments'],
|
||||
max_audio_length_ms=10_000,
|
||||
)
|
||||
|
||||
# Add response to context
|
||||
ai_segment = Segment(
|
||||
text=response_text,
|
||||
speaker=1 if speaker_id == 0 else 0,
|
||||
audio=audio_tensor
|
||||
)
|
||||
client['context_segments'].append(ai_segment)
|
||||
|
||||
# Convert audio to base64 and send back to client
|
||||
audio_base64 = encode_audio_data(audio_tensor)
|
||||
emit('audio_response', {
|
||||
'type': 'audio_response',
|
||||
'text': response_text,
|
||||
'audio': audio_base64
|
||||
})
|
||||
else:
|
||||
# If transcription failed, send a generic response
|
||||
emit('error', {
|
||||
'type': 'error',
|
||||
'message': "Sorry, I couldn't understand what you said. Could you try again?"
|
||||
})
|
||||
|
||||
# Clear buffer and reset silence detection
|
||||
client['streaming_buffer'] = []
|
||||
client['energy_window'].clear()
|
||||
client['is_silence'] = False
|
||||
client['last_active_time'] = time.time()
|
||||
|
||||
# If buffer gets too large without silence, process it anyway
|
||||
elif len(client['streaming_buffer']) >= 30: # ~6 seconds of audio at 5 chunks/sec
|
||||
full_audio = torch.cat(client['streaming_buffer'], dim=0)
|
||||
|
||||
# Process with WhisperX speech-to-text
|
||||
transcribed_text = transcribe_audio(full_audio)
|
||||
|
||||
if transcribed_text:
|
||||
client['context_segments'].append(
|
||||
Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
||||
)
|
||||
|
||||
# Send the transcribed text to client
|
||||
emit('transcription', {
|
||||
'type': 'transcription',
|
||||
'text': transcribed_text + " (processing continued speech...)"
|
||||
})
|
||||
|
||||
client['streaming_buffer'] = []
|
||||
|
||||
except Exception as e:
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
print(f"Error processing streaming audio: {str(e)}")
|
||||
emit('error', {
|
||||
'type': 'error',
|
||||
'message': f"Error processing streaming audio: {str(e)}"
|
||||
})
|
||||
|
||||
@socketio.on('stop_streaming')
|
||||
def handle_stop_streaming(data):
|
||||
client_id = request.sid
|
||||
if client_id not in active_clients:
|
||||
return
|
||||
|
||||
client = active_clients[client_id]
|
||||
client['is_streaming'] = False
|
||||
|
||||
if client['streaming_buffer'] and len(client['streaming_buffer']) > 5:
|
||||
# Process any remaining audio in the buffer
|
||||
full_audio = torch.cat(client['streaming_buffer'], dim=0)
|
||||
|
||||
# Process with WhisperX speech-to-text
|
||||
transcribed_text = transcribe_audio(full_audio)
|
||||
|
||||
if transcribed_text:
|
||||
client['context_segments'].append(
|
||||
Segment(text=transcribed_text, speaker=data.get("speaker", 0), audio=full_audio)
|
||||
)
|
||||
|
||||
# Send the transcribed text to client
|
||||
emit('transcription', {
|
||||
'type': 'transcription',
|
||||
'text': transcribed_text
|
||||
})
|
||||
|
||||
client['streaming_buffer'] = []
|
||||
emit('streaming_status', {
|
||||
'type': 'streaming_status',
|
||||
'status': 'stopped'
|
||||
})
|
||||
|
||||
# Update the __main__ block with a comprehensive server startup message
|
||||
if __name__ == "__main__":
|
||||
print(f"\n{'='*60}")
|
||||
print(f"🔊 Sesame AI Voice Chat Server")
|
||||
print(f"🔊 Sesame AI Voice Chat Server (Flask Implementation)")
|
||||
print(f"{'='*60}")
|
||||
print(f"📡 Server Information:")
|
||||
print(f" - Local URL: http://localhost:8000")
|
||||
print(f" - Network URL: http://<your-ip-address>:8000")
|
||||
print(f" - WebSocket: ws://<your-ip-address>:8000/ws")
|
||||
print(f" - Local URL: http://localhost:5000")
|
||||
print(f" - Network URL: http://<your-ip-address>:5000")
|
||||
print(f" - WebSocket: ws://<your-ip-address>:5000/socket.io")
|
||||
print(f"{'='*60}")
|
||||
print(f"💡 To make this server public:")
|
||||
print(f" 1. Ensure port 8000 is open in your firewall")
|
||||
print(f" 2. Set up port forwarding on your router to port 8000")
|
||||
print(f" 3. Or use a service like ngrok with: ngrok http 8000")
|
||||
print(f" 1. Ensure port 5000 is open in your firewall")
|
||||
print(f" 2. Set up port forwarding on your router to port 5000")
|
||||
print(f" 3. Or use a service like ngrok with: ngrok http 5000")
|
||||
print(f"{'='*60}")
|
||||
print(f"🌐 Device: {device.upper()}")
|
||||
print(f"🧠 Models loaded: Sesame CSM + WhisperX ({asr_model.device})")
|
||||
@@ -503,5 +469,4 @@ if __name__ == "__main__":
|
||||
print(f"{'='*60}")
|
||||
print(f"Ready to receive connections! Press Ctrl+C to stop the server.\n")
|
||||
|
||||
# Start the server
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
||||
socketio.run(app, host="0.0.0.0", port=5000, debug=False)
|
||||
Reference in New Issue
Block a user