Demo Fixes 14
This commit is contained in:
@@ -175,12 +175,124 @@
|
||||
margin-top: 4px;
|
||||
text-align: right;
|
||||
}
|
||||
|
||||
.text-only-indicator {
|
||||
font-size: 0.8em;
|
||||
color: #e74c3c;
|
||||
margin-top: 4px;
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.status-message {
|
||||
text-align: center;
|
||||
padding: 8px;
|
||||
margin: 10px 0;
|
||||
background-color: #f8f9fa;
|
||||
border-radius: 5px;
|
||||
color: #666;
|
||||
font-size: 0.9em;
|
||||
}
|
||||
|
||||
/* Audio visualizer styles */
|
||||
.visualizer-container {
|
||||
width: 100%;
|
||||
height: 120px;
|
||||
margin: 15px 0;
|
||||
border-radius: 10px;
|
||||
overflow: hidden;
|
||||
background-color: #000;
|
||||
position: relative;
|
||||
}
|
||||
|
||||
#visualizer {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
display: block;
|
||||
}
|
||||
|
||||
.visualizer-label {
|
||||
position: absolute;
|
||||
top: 10px;
|
||||
left: 10px;
|
||||
color: white;
|
||||
font-size: 0.8em;
|
||||
background-color: rgba(0, 0, 0, 0.5);
|
||||
padding: 4px 8px;
|
||||
border-radius: 4px;
|
||||
}
|
||||
|
||||
/* Modern switch for visualizer toggle */
|
||||
.switch-container {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
margin-bottom: 10px;
|
||||
}
|
||||
|
||||
.switch {
|
||||
position: relative;
|
||||
display: inline-block;
|
||||
width: 50px;
|
||||
height: 24px;
|
||||
margin-left: 10px;
|
||||
}
|
||||
|
||||
.switch input {
|
||||
opacity: 0;
|
||||
width: 0;
|
||||
height: 0;
|
||||
}
|
||||
|
||||
.slider {
|
||||
position: absolute;
|
||||
cursor: pointer;
|
||||
top: 0;
|
||||
left: 0;
|
||||
right: 0;
|
||||
bottom: 0;
|
||||
background-color: #ccc;
|
||||
transition: .4s;
|
||||
border-radius: 24px;
|
||||
}
|
||||
|
||||
.slider:before {
|
||||
position: absolute;
|
||||
content: "";
|
||||
height: 16px;
|
||||
width: 16px;
|
||||
left: 4px;
|
||||
bottom: 4px;
|
||||
background-color: white;
|
||||
transition: .4s;
|
||||
border-radius: 50%;
|
||||
}
|
||||
|
||||
input:checked + .slider {
|
||||
background-color: #4CAF50;
|
||||
}
|
||||
|
||||
input:checked + .slider:before {
|
||||
transform: translateX(26px);
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Voice Assistant with CSM & Whisper</h1>
|
||||
<div id="conversation"></div>
|
||||
|
||||
<div class="switch-container">
|
||||
<span>Audio Visualizer</span>
|
||||
<label class="switch">
|
||||
<input type="checkbox" id="visualizerToggle" checked>
|
||||
<span class="slider"></span>
|
||||
</label>
|
||||
</div>
|
||||
|
||||
<div class="visualizer-container" id="visualizerContainer">
|
||||
<canvas id="visualizer"></canvas>
|
||||
<div class="visualizer-label" id="visualizerLabel">Listening...</div>
|
||||
</div>
|
||||
|
||||
<div id="controls">
|
||||
<button id="recordButton">Hold to Speak</button>
|
||||
</div>
|
||||
@@ -201,27 +313,80 @@
|
||||
const conversation = document.getElementById('conversation');
|
||||
const status = document.getElementById('status');
|
||||
const audioWave = document.getElementById('audioWave');
|
||||
const visualizerToggle = document.getElementById('visualizerToggle');
|
||||
const visualizerContainer = document.getElementById('visualizerContainer');
|
||||
const visualizerLabel = document.getElementById('visualizerLabel');
|
||||
const canvas = document.getElementById('visualizer');
|
||||
const canvasCtx = canvas.getContext('2d');
|
||||
|
||||
let mediaRecorder;
|
||||
let audioChunks = [];
|
||||
let isRecording = false;
|
||||
let audioSendInterval;
|
||||
let sessionActive = false;
|
||||
let reconnectAttempts = 0;
|
||||
let audioStream = null;
|
||||
let audioAnalyser = null;
|
||||
let visualizerActive = true;
|
||||
let visualizerAnimationId = null;
|
||||
let audioBufferSource = null;
|
||||
|
||||
// Initialize audio context
|
||||
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
|
||||
|
||||
// Set up canvas size
|
||||
function setupCanvas() {
|
||||
canvas.width = visualizerContainer.offsetWidth;
|
||||
canvas.height = visualizerContainer.offsetHeight;
|
||||
}
|
||||
|
||||
// Handle visualizer toggle
|
||||
visualizerToggle.addEventListener('change', function() {
|
||||
visualizerActive = this.checked;
|
||||
visualizerContainer.style.display = visualizerActive ? 'block' : 'none';
|
||||
|
||||
if (!visualizerActive && visualizerAnimationId) {
|
||||
cancelAnimationFrame(visualizerAnimationId);
|
||||
visualizerAnimationId = null;
|
||||
} else if (visualizerActive && audioAnalyser) {
|
||||
drawVisualizer();
|
||||
}
|
||||
});
|
||||
|
||||
// Connect to server
|
||||
socket.on('connect', () => {
|
||||
status.textContent = 'Connected to server';
|
||||
sessionActive = true;
|
||||
reconnectAttempts = 0;
|
||||
|
||||
if (conversation.children.length > 0) {
|
||||
addStatusMessage("Reconnected to server");
|
||||
}
|
||||
});
|
||||
|
||||
socket.on('disconnect', () => {
|
||||
status.textContent = 'Disconnected from server';
|
||||
sessionActive = false;
|
||||
|
||||
addStatusMessage("Disconnected from server. Attempting to reconnect...");
|
||||
|
||||
// Attempt to reconnect
|
||||
tryReconnect();
|
||||
});
|
||||
|
||||
function tryReconnect() {
|
||||
if (reconnectAttempts < 5) {
|
||||
reconnectAttempts++;
|
||||
setTimeout(() => {
|
||||
if (!sessionActive) {
|
||||
socket.connect();
|
||||
}
|
||||
}, 1000 * reconnectAttempts);
|
||||
} else {
|
||||
addStatusMessage("Failed to reconnect. Please refresh the page.");
|
||||
}
|
||||
}
|
||||
|
||||
socket.on('ready', (data) => {
|
||||
status.textContent = data.message;
|
||||
setupAudioRecording();
|
||||
@@ -230,34 +395,87 @@
|
||||
socket.on('transcription', (data) => {
|
||||
addMessage('user', data.text);
|
||||
status.textContent = 'Assistant is thinking...';
|
||||
visualizerLabel.textContent = 'Processing...';
|
||||
});
|
||||
|
||||
socket.on('audio_response', (data) => {
|
||||
// Play audio
|
||||
status.textContent = 'Playing response...';
|
||||
visualizerLabel.textContent = 'Assistant speaking...';
|
||||
|
||||
// Create audio element
|
||||
const audio = new Audio('data:audio/wav;base64,' + data.audio);
|
||||
|
||||
// Visualize assistant audio if visualizer is active
|
||||
if (visualizerActive) {
|
||||
visualizeResponseAudio(audio);
|
||||
}
|
||||
|
||||
audio.onended = () => {
|
||||
status.textContent = 'Ready to record';
|
||||
visualizerLabel.textContent = 'Listening...';
|
||||
if (audioBufferSource) {
|
||||
audioBufferSource.disconnect();
|
||||
audioBufferSource = null;
|
||||
}
|
||||
};
|
||||
|
||||
audio.onerror = () => {
|
||||
status.textContent = 'Error playing audio';
|
||||
visualizerLabel.textContent = 'Listening...';
|
||||
console.error('Error playing audio response');
|
||||
};
|
||||
|
||||
audio.play().catch(err => {
|
||||
status.textContent = 'Error playing audio: ' + err.message;
|
||||
visualizerLabel.textContent = 'Listening...';
|
||||
console.error('Error playing audio:', err);
|
||||
});
|
||||
|
||||
// Display text
|
||||
addMessage('bot', data.text);
|
||||
addMessage('bot', data.text, false);
|
||||
});
|
||||
|
||||
// Visualize response audio
|
||||
async function visualizeResponseAudio(audioElement) {
|
||||
try {
|
||||
// Create media element source
|
||||
const audioSource = audioContext.createMediaElementSource(audioElement);
|
||||
|
||||
// Create analyser
|
||||
const analyser = audioContext.createAnalyser();
|
||||
analyser.fftSize = 2048;
|
||||
|
||||
// Connect
|
||||
audioSource.connect(analyser);
|
||||
analyser.connect(audioContext.destination);
|
||||
|
||||
// Store reference
|
||||
audioAnalyser = analyser;
|
||||
|
||||
// Start visualization
|
||||
drawVisualizer();
|
||||
} catch (e) {
|
||||
console.error('Error setting up audio visualization:', e);
|
||||
}
|
||||
}
|
||||
|
||||
// Handle text-only responses when audio generation isn't available
|
||||
socket.on('text_response', (data) => {
|
||||
status.textContent = 'Received text response';
|
||||
visualizerLabel.textContent = 'Text only (no audio)';
|
||||
addMessage('bot', data.text, true);
|
||||
setTimeout(() => {
|
||||
status.textContent = 'Ready to record';
|
||||
visualizerLabel.textContent = 'Listening...';
|
||||
}, 1000);
|
||||
});
|
||||
|
||||
socket.on('error', (data) => {
|
||||
status.textContent = 'Error: ' + data.message;
|
||||
visualizerLabel.textContent = 'Error occurred';
|
||||
console.error('Server error:', data.message);
|
||||
addStatusMessage("Error: " + data.message);
|
||||
});
|
||||
|
||||
function setupAudioRecording() {
|
||||
@@ -267,9 +485,29 @@
|
||||
return;
|
||||
}
|
||||
|
||||
// Set up canvas
|
||||
setupCanvas();
|
||||
|
||||
// Get user media
|
||||
navigator.mediaDevices.getUserMedia({ audio: true })
|
||||
.then(stream => {
|
||||
// Store stream for visualizer
|
||||
audioStream = stream;
|
||||
|
||||
// Create audio analyser for visualization
|
||||
const source = audioContext.createMediaStreamSource(stream);
|
||||
const analyser = audioContext.createAnalyser();
|
||||
analyser.fftSize = 2048;
|
||||
source.connect(analyser);
|
||||
|
||||
// Store analyser for visualization
|
||||
audioAnalyser = analyser;
|
||||
|
||||
// Start visualizer if enabled
|
||||
if (visualizerActive) {
|
||||
drawVisualizer();
|
||||
}
|
||||
|
||||
// Setup recording with better audio quality
|
||||
const options = {
|
||||
mimeType: 'audio/webm',
|
||||
@@ -293,12 +531,6 @@
|
||||
processRecording();
|
||||
};
|
||||
|
||||
// Create audio analyzer for visualization
|
||||
const source = audioContext.createMediaStreamSource(stream);
|
||||
const analyzer = audioContext.createAnalyser();
|
||||
analyzer.fftSize = 2048;
|
||||
source.connect(analyzer);
|
||||
|
||||
// Setup button handlers with better touch handling
|
||||
recordButton.addEventListener('mousedown', startRecording);
|
||||
recordButton.addEventListener('touchstart', (e) => {
|
||||
@@ -322,6 +554,57 @@
|
||||
});
|
||||
}
|
||||
|
||||
// Draw visualizer animation
|
||||
function drawVisualizer() {
|
||||
if (!visualizerActive || !audioAnalyser) {
|
||||
return;
|
||||
}
|
||||
|
||||
visualizerAnimationId = requestAnimationFrame(drawVisualizer);
|
||||
|
||||
const bufferLength = audioAnalyser.frequencyBinCount;
|
||||
const dataArray = new Uint8Array(bufferLength);
|
||||
|
||||
// Get frequency data
|
||||
audioAnalyser.getByteFrequencyData(dataArray);
|
||||
|
||||
// Clear canvas
|
||||
canvasCtx.fillStyle = '#000';
|
||||
canvasCtx.fillRect(0, 0, canvas.width, canvas.height);
|
||||
|
||||
// Draw visualization based on audio data
|
||||
const barWidth = (canvas.width / bufferLength) * 2.5;
|
||||
let x = 0;
|
||||
|
||||
// Choose color based on state
|
||||
let gradient;
|
||||
if (isRecording) {
|
||||
// Red gradient for recording
|
||||
gradient = canvasCtx.createLinearGradient(0, 0, 0, canvas.height);
|
||||
gradient.addColorStop(0, 'rgba(255, 0, 0, 0.8)');
|
||||
gradient.addColorStop(1, 'rgba(255, 80, 80, 0.2)');
|
||||
} else if (visualizerLabel.textContent === 'Assistant speaking...') {
|
||||
// Blue gradient for assistant
|
||||
gradient = canvasCtx.createLinearGradient(0, 0, 0, canvas.height);
|
||||
gradient.addColorStop(0, 'rgba(0, 120, 255, 0.8)');
|
||||
gradient.addColorStop(1, 'rgba(80, 160, 255, 0.2)');
|
||||
} else {
|
||||
// Green gradient for listening
|
||||
gradient = canvasCtx.createLinearGradient(0, 0, 0, canvas.height);
|
||||
gradient.addColorStop(0, 'rgba(0, 200, 80, 0.8)');
|
||||
gradient.addColorStop(1, 'rgba(80, 255, 120, 0.2)');
|
||||
}
|
||||
|
||||
for (let i = 0; i < bufferLength; i++) {
|
||||
const barHeight = (dataArray[i] / 255) * canvas.height;
|
||||
|
||||
canvasCtx.fillStyle = gradient;
|
||||
canvasCtx.fillRect(x, canvas.height - barHeight, barWidth, barHeight);
|
||||
|
||||
x += barWidth + 1;
|
||||
}
|
||||
}
|
||||
|
||||
function startRecording() {
|
||||
if (!isRecording && sessionActive) {
|
||||
audioChunks = [];
|
||||
@@ -329,6 +612,7 @@
|
||||
recordButton.classList.add('recording');
|
||||
recordButton.textContent = 'Release to Stop';
|
||||
status.textContent = 'Recording...';
|
||||
visualizerLabel.textContent = 'Recording...';
|
||||
audioWave.classList.remove('hidden');
|
||||
isRecording = true;
|
||||
|
||||
@@ -350,6 +634,7 @@
|
||||
recordButton.classList.remove('recording');
|
||||
recordButton.textContent = 'Hold to Speak';
|
||||
status.textContent = 'Processing speech...';
|
||||
visualizerLabel.textContent = 'Processing...';
|
||||
audioWave.classList.add('hidden');
|
||||
isRecording = false;
|
||||
}
|
||||
@@ -358,6 +643,7 @@
|
||||
function processRecording() {
|
||||
if (audioChunks.length === 0) {
|
||||
status.textContent = 'No audio recorded';
|
||||
visualizerLabel.textContent = 'Listening...';
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -380,11 +666,13 @@
|
||||
} catch (e) {
|
||||
console.error('Error processing audio:', e);
|
||||
status.textContent = 'Error processing audio';
|
||||
visualizerLabel.textContent = 'Error';
|
||||
}
|
||||
};
|
||||
|
||||
fileReader.onerror = () => {
|
||||
status.textContent = 'Error reading audio data';
|
||||
visualizerLabel.textContent = 'Error';
|
||||
};
|
||||
|
||||
fileReader.readAsArrayBuffer(audioBlob);
|
||||
@@ -403,7 +691,7 @@
|
||||
return float32Array;
|
||||
}
|
||||
|
||||
function addMessage(sender, text) {
|
||||
function addMessage(sender, text, textOnly = false) {
|
||||
const containerDiv = document.createElement('div');
|
||||
containerDiv.className = sender === 'user' ? 'message-container user-message-container' : 'message-container bot-message-container';
|
||||
|
||||
@@ -422,12 +710,39 @@
|
||||
infoDiv.className = 'transcription-info';
|
||||
infoDiv.textContent = 'Transcribed with Whisper';
|
||||
containerDiv.appendChild(infoDiv);
|
||||
} else if (textOnly) {
|
||||
// Add indicator for text-only response
|
||||
const textOnlyDiv = document.createElement('div');
|
||||
textOnlyDiv.className = 'text-only-indicator';
|
||||
textOnlyDiv.textContent = 'Text-only response (audio unavailable)';
|
||||
containerDiv.appendChild(textOnlyDiv);
|
||||
}
|
||||
|
||||
conversation.appendChild(containerDiv);
|
||||
conversation.scrollTop = conversation.scrollHeight;
|
||||
}
|
||||
|
||||
function addStatusMessage(message) {
|
||||
const statusDiv = document.createElement('div');
|
||||
statusDiv.className = 'status-message';
|
||||
statusDiv.textContent = message;
|
||||
conversation.appendChild(statusDiv);
|
||||
conversation.scrollTop = conversation.scrollHeight;
|
||||
|
||||
// Auto-remove status messages after 10 seconds
|
||||
setTimeout(() => {
|
||||
if (conversation.contains(statusDiv)) {
|
||||
statusDiv.style.opacity = '0';
|
||||
statusDiv.style.transition = 'opacity 0.5s';
|
||||
setTimeout(() => {
|
||||
if (conversation.contains(statusDiv)) {
|
||||
conversation.removeChild(statusDiv);
|
||||
}
|
||||
}, 500);
|
||||
}
|
||||
}, 10000);
|
||||
}
|
||||
|
||||
function arrayBufferToBase64(buffer) {
|
||||
let binary = '';
|
||||
const bytes = new Uint8Array(buffer);
|
||||
@@ -450,6 +765,34 @@
|
||||
if (socket && socket.connected) {
|
||||
socket.disconnect();
|
||||
}
|
||||
|
||||
if (visualizerAnimationId) {
|
||||
cancelAnimationFrame(visualizerAnimationId);
|
||||
}
|
||||
});
|
||||
|
||||
// Add a reload button for debugging
|
||||
const reloadButton = document.createElement('button');
|
||||
reloadButton.textContent = '🔄 Reload';
|
||||
reloadButton.style.position = 'fixed';
|
||||
reloadButton.style.bottom = '10px';
|
||||
reloadButton.style.right = '10px';
|
||||
reloadButton.style.padding = '5px 10px';
|
||||
reloadButton.style.fontSize = '12px';
|
||||
reloadButton.style.backgroundColor = '#f5f5f5';
|
||||
reloadButton.style.border = '1px solid #ddd';
|
||||
reloadButton.style.borderRadius = '4px';
|
||||
reloadButton.style.cursor = 'pointer';
|
||||
|
||||
reloadButton.addEventListener('click', () => {
|
||||
window.location.reload();
|
||||
});
|
||||
|
||||
document.body.appendChild(reloadButton);
|
||||
|
||||
// Handle window resize to update canvas size
|
||||
window.addEventListener('resize', () => {
|
||||
setupCanvas();
|
||||
});
|
||||
</script>
|
||||
</body>
|
||||
|
||||
@@ -12,6 +12,10 @@ from collections import deque
|
||||
import requests
|
||||
import huggingface_hub
|
||||
from generator import load_csm_1b, Segment
|
||||
import threading
|
||||
import queue
|
||||
from flask import stream_with_context, Response
|
||||
import time
|
||||
|
||||
# Configure environment with longer timeouts
|
||||
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "600" # 10 minutes timeout for downloads
|
||||
@@ -124,6 +128,8 @@ def load_models():
|
||||
|
||||
# Store conversation context
|
||||
conversation_context = {} # session_id -> context
|
||||
CHUNK_SIZE = 24000 # Number of audio samples per chunk (1 second at 24kHz)
|
||||
audio_stream_queues = {} # session_id -> queue for audio chunks
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
@@ -144,8 +150,14 @@ def handle_connect():
|
||||
@socketio.on('disconnect')
|
||||
def handle_disconnect():
|
||||
print(f"Client disconnected: {request.sid}")
|
||||
if request.sid in conversation_context:
|
||||
del conversation_context[request.sid]
|
||||
session_id = request.sid
|
||||
|
||||
# Clean up resources
|
||||
if session_id in conversation_context:
|
||||
del conversation_context[session_id]
|
||||
|
||||
if session_id in audio_stream_queues:
|
||||
del audio_stream_queues[session_id]
|
||||
|
||||
@socketio.on('start_speaking')
|
||||
def handle_start_speaking():
|
||||
@@ -191,7 +203,7 @@ def is_silence(audio_tensor, threshold=0.02):
|
||||
return torch.mean(torch.abs(audio_tensor)) < threshold
|
||||
|
||||
def process_user_utterance(session_id):
|
||||
"""Process completed user utterance, generate response and send audio back"""
|
||||
"""Process completed user utterance, generate response and stream audio back"""
|
||||
context = conversation_context[session_id]
|
||||
|
||||
if not context['audio_buffer']:
|
||||
@@ -234,37 +246,32 @@ def process_user_utterance(session_id):
|
||||
)
|
||||
context['segments'].append(user_segment)
|
||||
|
||||
# Generate bot response
|
||||
# Generate bot response text
|
||||
bot_response = generate_llm_response(user_text, context['segments'])
|
||||
print(f"Bot response: {bot_response}")
|
||||
|
||||
# Send transcribed text to client
|
||||
emit('transcription', {'text': user_text}, room=session_id)
|
||||
|
||||
# Generate and send audio response if CSM is available
|
||||
# Generate and stream audio response if CSM is available
|
||||
if csm_generator is not None:
|
||||
# Convert to audio using CSM
|
||||
bot_audio = generate_audio_response(bot_response, context['segments'])
|
||||
# Set up streaming queue for this session
|
||||
if session_id not in audio_stream_queues:
|
||||
audio_stream_queues[session_id] = queue.Queue()
|
||||
else:
|
||||
# Clear any existing items in the queue
|
||||
while not audio_stream_queues[session_id].empty():
|
||||
audio_stream_queues[session_id].get()
|
||||
|
||||
# Convert audio to base64 for sending over websocket
|
||||
audio_bytes = io.BytesIO()
|
||||
torchaudio.save(audio_bytes, bot_audio.unsqueeze(0).cpu(), csm_generator.sample_rate, format="wav")
|
||||
audio_bytes.seek(0)
|
||||
audio_b64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
|
||||
# Start audio generation in a separate thread to not block the server
|
||||
threading.Thread(
|
||||
target=generate_and_stream_audio,
|
||||
args=(bot_response, context['segments'], session_id),
|
||||
daemon=True
|
||||
).start()
|
||||
|
||||
# Add bot response to conversation history
|
||||
bot_segment = Segment(
|
||||
text=bot_response,
|
||||
speaker=1, # Bot is speaker 1
|
||||
audio=bot_audio
|
||||
)
|
||||
context['segments'].append(bot_segment)
|
||||
|
||||
# Send audio response to client
|
||||
emit('audio_response', {
|
||||
'audio': audio_b64,
|
||||
'text': bot_response
|
||||
}, room=session_id)
|
||||
# Initial response with text
|
||||
emit('start_streaming_response', {'text': bot_response}, room=session_id)
|
||||
else:
|
||||
# Send text-only response if audio generation isn't available
|
||||
emit('text_response', {'text': bot_response}, room=session_id)
|
||||
@@ -391,6 +398,98 @@ def generate_audio_response(text, conversation_segments):
|
||||
# Return silence as fallback
|
||||
return torch.zeros(csm_generator.sample_rate * 3) # 3 seconds of silence
|
||||
|
||||
def generate_and_stream_audio(text, conversation_segments, session_id):
|
||||
"""Generate audio response using CSM and stream it in chunks"""
|
||||
try:
|
||||
# Use the last few conversation segments as context
|
||||
context_segments = conversation_segments[-4:] if len(conversation_segments) > 4 else conversation_segments
|
||||
|
||||
# Generate full audio for bot response
|
||||
audio = csm_generator.generate(
|
||||
text=text,
|
||||
speaker=1, # Bot is speaker 1
|
||||
context=context_segments,
|
||||
max_audio_length_ms=10000, # 10 seconds max
|
||||
temperature=0.9,
|
||||
topk=50
|
||||
)
|
||||
|
||||
# Store the full audio for conversation history
|
||||
bot_segment = Segment(
|
||||
text=text,
|
||||
speaker=1, # Bot is speaker 1
|
||||
audio=audio
|
||||
)
|
||||
if session_id in conversation_context:
|
||||
conversation_context[session_id]['segments'].append(bot_segment)
|
||||
|
||||
# Split audio into chunks for streaming
|
||||
chunk_size = CHUNK_SIZE
|
||||
for i in range(0, len(audio), chunk_size):
|
||||
chunk = audio[i:i+chunk_size]
|
||||
|
||||
# Convert audio chunk to base64 for streaming
|
||||
audio_bytes = io.BytesIO()
|
||||
torchaudio.save(audio_bytes, chunk.unsqueeze(0).cpu(), csm_generator.sample_rate, format="wav")
|
||||
audio_bytes.seek(0)
|
||||
audio_b64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
|
||||
|
||||
# Send the chunk to the client
|
||||
if session_id in audio_stream_queues:
|
||||
audio_stream_queues[session_id].put({
|
||||
'audio': audio_b64,
|
||||
'is_last': i + chunk_size >= len(audio)
|
||||
})
|
||||
else:
|
||||
# Session was disconnected before we finished generating
|
||||
break
|
||||
|
||||
# Signal the end of streaming if queue still exists
|
||||
if session_id in audio_stream_queues:
|
||||
# Add an empty chunk as a sentinel to signal end of streaming
|
||||
audio_stream_queues[session_id].put(None)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error generating or streaming audio: {e}")
|
||||
# Send error message to client
|
||||
if session_id in conversation_context:
|
||||
socketio.emit('error', {
|
||||
'message': f'Error generating audio: {str(e)}'
|
||||
}, room=session_id)
|
||||
|
||||
# Send a final message to unblock the client
|
||||
if session_id in audio_stream_queues:
|
||||
audio_stream_queues[session_id].put(None)
|
||||
|
||||
@socketio.on('request_audio_chunk')
|
||||
def handle_request_audio_chunk():
|
||||
"""Send the next audio chunk in the queue to the client"""
|
||||
session_id = request.sid
|
||||
|
||||
if session_id not in audio_stream_queues:
|
||||
emit('error', {'message': 'No audio stream available'})
|
||||
return
|
||||
|
||||
# Get the next chunk or wait for it to be available
|
||||
try:
|
||||
if not audio_stream_queues[session_id].empty():
|
||||
chunk = audio_stream_queues[session_id].get(block=False)
|
||||
|
||||
# If chunk is None, we're done streaming
|
||||
if chunk is None:
|
||||
emit('end_streaming')
|
||||
# Clean up the queue
|
||||
if session_id in audio_stream_queues:
|
||||
del audio_stream_queues[session_id]
|
||||
else:
|
||||
emit('audio_chunk', chunk)
|
||||
else:
|
||||
# If the queue is empty but we're still generating, tell client to wait
|
||||
emit('wait_for_chunk')
|
||||
except Exception as e:
|
||||
print(f"Error sending audio chunk: {e}")
|
||||
emit('error', {'message': f'Error streaming audio: {str(e)}'})
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Ensure the existing index.html file is in the correct location
|
||||
if not os.path.exists('templates'):
|
||||
|
||||
Reference in New Issue
Block a user