Demo Fixes 10
This commit is contained in:
@@ -8,9 +8,17 @@ import numpy as np
|
|||||||
from flask import Flask, render_template, request
|
from flask import Flask, render_template, request
|
||||||
from flask_socketio import SocketIO, emit
|
from flask_socketio import SocketIO, emit
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
from faster_whisper import WhisperModel
|
|
||||||
from generator import load_csm_1b, Segment
|
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
import requests
|
||||||
|
import huggingface_hub
|
||||||
|
from generator import load_csm_1b, Segment
|
||||||
|
|
||||||
|
# Configure environment with longer timeouts
|
||||||
|
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "600" # 10 minutes timeout for downloads
|
||||||
|
requests.adapters.DEFAULT_TIMEOUT = 60 # Increase default requests timeout
|
||||||
|
|
||||||
|
# Create a models directory for caching
|
||||||
|
os.makedirs("models", exist_ok=True)
|
||||||
|
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
app.config['SECRET_KEY'] = 'your-secret-key'
|
app.config['SECRET_KEY'] = 'your-secret-key'
|
||||||
@@ -29,23 +37,50 @@ else:
|
|||||||
|
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
# Initialize Faster-Whisper for transcription
|
# Initialize models with proper error handling
|
||||||
print("Loading Whisper model...")
|
whisper_model = None
|
||||||
whisper_model = WhisperModel("base", device=device, compute_type=whisper_compute_type)
|
csm_generator = None
|
||||||
|
llm_model = None
|
||||||
|
llm_tokenizer = None
|
||||||
|
|
||||||
# Initialize CSM model for audio generation
|
def load_models():
|
||||||
print("Loading CSM model...")
|
global whisper_model, csm_generator, llm_model, llm_tokenizer
|
||||||
csm_generator = load_csm_1b(device=device)
|
|
||||||
|
# Initialize Faster-Whisper for transcription
|
||||||
# Initialize Llama 3.2 model for response generation
|
try:
|
||||||
print("Loading Llama 3.2 model...")
|
print("Loading Whisper model...")
|
||||||
llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources
|
# Import here to avoid immediate import errors if package is missing
|
||||||
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
from faster_whisper import WhisperModel
|
||||||
llm_model = AutoModelForCausalLM.from_pretrained(
|
whisper_model = WhisperModel("base", device=device, compute_type=whisper_compute_type, download_root="./models/whisper")
|
||||||
llm_model_id,
|
print("Whisper model loaded successfully")
|
||||||
torch_dtype=torch.bfloat16,
|
except Exception as e:
|
||||||
device_map=device
|
print(f"Error loading Whisper model: {e}")
|
||||||
)
|
print("Will use backup speech recognition method if available")
|
||||||
|
|
||||||
|
# Initialize CSM model for audio generation
|
||||||
|
try:
|
||||||
|
print("Loading CSM model...")
|
||||||
|
csm_generator = load_csm_1b(device=device)
|
||||||
|
print("CSM model loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error loading CSM model: {e}")
|
||||||
|
print("Audio generation will not be available")
|
||||||
|
|
||||||
|
# Initialize Llama 3.2 model for response generation
|
||||||
|
try:
|
||||||
|
print("Loading Llama 3.2 model...")
|
||||||
|
llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources
|
||||||
|
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id, cache_dir="./models/llama")
|
||||||
|
llm_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
llm_model_id,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
device_map=device,
|
||||||
|
cache_dir="./models/llama"
|
||||||
|
)
|
||||||
|
print("Llama 3.2 model loaded successfully")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error loading Llama 3.2 model: {e}")
|
||||||
|
print("Will use a fallback response generation method")
|
||||||
|
|
||||||
# Store conversation context
|
# Store conversation context
|
||||||
conversation_context = {} # session_id -> context
|
conversation_context = {} # session_id -> context
|
||||||
@@ -128,7 +163,7 @@ def process_user_utterance(session_id):
|
|||||||
context['is_speaking'] = False
|
context['is_speaking'] = False
|
||||||
context['silence_start'] = None
|
context['silence_start'] = None
|
||||||
|
|
||||||
# Save audio to temporary WAV file for Whisper transcription
|
# Save audio to temporary WAV file for transcription
|
||||||
temp_audio_path = f"temp_audio_{session_id}.wav"
|
temp_audio_path = f"temp_audio_{session_id}.wav"
|
||||||
torchaudio.save(
|
torchaudio.save(
|
||||||
temp_audio_path,
|
temp_audio_path,
|
||||||
@@ -136,25 +171,17 @@ def process_user_utterance(session_id):
|
|||||||
44100 # Assuming 44.1kHz from client
|
44100 # Assuming 44.1kHz from client
|
||||||
)
|
)
|
||||||
|
|
||||||
# Transcribe speech using Faster-Whisper
|
|
||||||
try:
|
try:
|
||||||
segments, info = whisper_model.transcribe(temp_audio_path, beam_size=5)
|
# Try using Whisper first if available
|
||||||
|
if whisper_model is not None:
|
||||||
|
user_text = transcribe_with_whisper(temp_audio_path)
|
||||||
|
else:
|
||||||
|
# Fallback to Google's speech recognition
|
||||||
|
user_text = transcribe_with_google(temp_audio_path)
|
||||||
|
|
||||||
# Collect all text from segments
|
|
||||||
user_text = ""
|
|
||||||
for segment in segments:
|
|
||||||
segment_text = segment.text.strip()
|
|
||||||
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment_text}")
|
|
||||||
user_text += segment_text + " "
|
|
||||||
|
|
||||||
user_text = user_text.strip()
|
|
||||||
|
|
||||||
# Cleanup temp file
|
|
||||||
if os.path.exists(temp_audio_path):
|
|
||||||
os.remove(temp_audio_path)
|
|
||||||
|
|
||||||
if not user_text:
|
if not user_text:
|
||||||
print("No speech detected.")
|
print("No speech detected.")
|
||||||
|
emit('error', {'message': 'No speech detected. Please try again.'}, room=session_id)
|
||||||
return
|
return
|
||||||
|
|
||||||
print(f"Transcribed: {user_text}")
|
print(f"Transcribed: {user_text}")
|
||||||
@@ -171,79 +198,158 @@ def process_user_utterance(session_id):
|
|||||||
bot_response = generate_llm_response(user_text, context['segments'])
|
bot_response = generate_llm_response(user_text, context['segments'])
|
||||||
print(f"Bot response: {bot_response}")
|
print(f"Bot response: {bot_response}")
|
||||||
|
|
||||||
# Convert to audio using CSM
|
|
||||||
bot_audio = generate_audio_response(bot_response, context['segments'])
|
|
||||||
|
|
||||||
# Convert audio to base64 for sending over websocket
|
|
||||||
audio_bytes = io.BytesIO()
|
|
||||||
torchaudio.save(audio_bytes, bot_audio.unsqueeze(0).cpu(), csm_generator.sample_rate, format="wav")
|
|
||||||
audio_bytes.seek(0)
|
|
||||||
audio_b64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
|
|
||||||
|
|
||||||
# Add bot response to conversation history
|
|
||||||
bot_segment = Segment(
|
|
||||||
text=bot_response,
|
|
||||||
speaker=1, # Bot is speaker 1
|
|
||||||
audio=bot_audio
|
|
||||||
)
|
|
||||||
context['segments'].append(bot_segment)
|
|
||||||
|
|
||||||
# Send transcribed text to client
|
# Send transcribed text to client
|
||||||
emit('transcription', {'text': user_text}, room=session_id)
|
emit('transcription', {'text': user_text}, room=session_id)
|
||||||
|
|
||||||
# Send audio response to client
|
# Generate and send audio response if CSM is available
|
||||||
emit('audio_response', {
|
if csm_generator is not None:
|
||||||
'audio': audio_b64,
|
# Convert to audio using CSM
|
||||||
'text': bot_response
|
bot_audio = generate_audio_response(bot_response, context['segments'])
|
||||||
}, room=session_id)
|
|
||||||
|
# Convert audio to base64 for sending over websocket
|
||||||
|
audio_bytes = io.BytesIO()
|
||||||
|
torchaudio.save(audio_bytes, bot_audio.unsqueeze(0).cpu(), csm_generator.sample_rate, format="wav")
|
||||||
|
audio_bytes.seek(0)
|
||||||
|
audio_b64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
|
||||||
|
|
||||||
|
# Add bot response to conversation history
|
||||||
|
bot_segment = Segment(
|
||||||
|
text=bot_response,
|
||||||
|
speaker=1, # Bot is speaker 1
|
||||||
|
audio=bot_audio
|
||||||
|
)
|
||||||
|
context['segments'].append(bot_segment)
|
||||||
|
|
||||||
|
# Send audio response to client
|
||||||
|
emit('audio_response', {
|
||||||
|
'audio': audio_b64,
|
||||||
|
'text': bot_response
|
||||||
|
}, room=session_id)
|
||||||
|
else:
|
||||||
|
# Send text-only response if audio generation isn't available
|
||||||
|
emit('text_response', {'text': bot_response}, room=session_id)
|
||||||
|
|
||||||
|
# Add text-only bot response to conversation history
|
||||||
|
bot_segment = Segment(
|
||||||
|
text=bot_response,
|
||||||
|
speaker=1, # Bot is speaker 1
|
||||||
|
audio=torch.zeros(1) # Placeholder empty audio
|
||||||
|
)
|
||||||
|
context['segments'].append(bot_segment)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error processing speech: {e}")
|
print(f"Error processing speech: {e}")
|
||||||
emit('error', {'message': f'Error processing speech: {str(e)}'}, room=session_id)
|
emit('error', {'message': f'Error processing speech: {str(e)}'}, room=session_id)
|
||||||
# Cleanup temp file in case of error
|
finally:
|
||||||
|
# Cleanup temp file
|
||||||
if os.path.exists(temp_audio_path):
|
if os.path.exists(temp_audio_path):
|
||||||
os.remove(temp_audio_path)
|
os.remove(temp_audio_path)
|
||||||
|
|
||||||
|
def transcribe_with_whisper(audio_path):
|
||||||
|
"""Transcribe audio using Faster-Whisper"""
|
||||||
|
segments, info = whisper_model.transcribe(audio_path, beam_size=5)
|
||||||
|
|
||||||
|
# Collect all text from segments
|
||||||
|
user_text = ""
|
||||||
|
for segment in segments:
|
||||||
|
segment_text = segment.text.strip()
|
||||||
|
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment_text}")
|
||||||
|
user_text += segment_text + " "
|
||||||
|
|
||||||
|
return user_text.strip()
|
||||||
|
|
||||||
|
def transcribe_with_google(audio_path):
|
||||||
|
"""Fallback transcription using Google's speech recognition"""
|
||||||
|
import speech_recognition as sr
|
||||||
|
recognizer = sr.Recognizer()
|
||||||
|
|
||||||
|
with sr.AudioFile(audio_path) as source:
|
||||||
|
audio = recognizer.record(source)
|
||||||
|
try:
|
||||||
|
text = recognizer.recognize_google(audio)
|
||||||
|
return text
|
||||||
|
except sr.UnknownValueError:
|
||||||
|
return ""
|
||||||
|
except sr.RequestError:
|
||||||
|
# If Google API fails, try a basic energy-based VAD approach
|
||||||
|
# This is a very basic fallback and won't give good results
|
||||||
|
return "[Speech detected but transcription failed]"
|
||||||
|
|
||||||
def generate_llm_response(user_text, conversation_segments):
|
def generate_llm_response(user_text, conversation_segments):
|
||||||
"""Generate text response using Llama 3.2"""
|
"""Generate text response using available model"""
|
||||||
# Format conversation history for the LLM
|
if llm_model is not None and llm_tokenizer is not None:
|
||||||
conversation_history = ""
|
# Format conversation history for the LLM
|
||||||
for segment in conversation_segments[-5:]: # Use last 5 utterances for context
|
conversation_history = ""
|
||||||
speaker_name = "User" if segment.speaker == 0 else "Assistant"
|
for segment in conversation_segments[-5:]: # Use last 5 utterances for context
|
||||||
conversation_history += f"{speaker_name}: {segment.text}\n"
|
speaker_name = "User" if segment.speaker == 0 else "Assistant"
|
||||||
|
conversation_history += f"{speaker_name}: {segment.text}\n"
|
||||||
|
|
||||||
|
# Add the current user query
|
||||||
|
conversation_history += f"User: {user_text}\nAssistant:"
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Generate response
|
||||||
|
inputs = llm_tokenizer(conversation_history, return_tensors="pt").to(device)
|
||||||
|
output = llm_model.generate(
|
||||||
|
inputs.input_ids,
|
||||||
|
max_new_tokens=150,
|
||||||
|
temperature=0.7,
|
||||||
|
top_p=0.9,
|
||||||
|
do_sample=True
|
||||||
|
)
|
||||||
|
|
||||||
|
response = llm_tokenizer.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||||
|
return response.strip()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error generating response with LLM: {e}")
|
||||||
|
return fallback_response(user_text)
|
||||||
|
else:
|
||||||
|
return fallback_response(user_text)
|
||||||
|
|
||||||
|
def fallback_response(user_text):
|
||||||
|
"""Generate a simple fallback response when LLM is not available"""
|
||||||
|
# Simple rule-based responses
|
||||||
|
user_text_lower = user_text.lower()
|
||||||
|
|
||||||
# Add the current user query
|
if "hello" in user_text_lower or "hi" in user_text_lower:
|
||||||
conversation_history += f"User: {user_text}\nAssistant:"
|
return "Hello! I'm a simple fallback assistant. The main language model couldn't be loaded, so I have limited capabilities."
|
||||||
|
|
||||||
# Generate response
|
elif "how are you" in user_text_lower:
|
||||||
inputs = llm_tokenizer(conversation_history, return_tensors="pt").to(device)
|
return "I'm functioning within my limited capabilities. How can I assist you today?"
|
||||||
output = llm_model.generate(
|
|
||||||
inputs.input_ids,
|
|
||||||
max_new_tokens=150,
|
|
||||||
temperature=0.7,
|
|
||||||
top_p=0.9,
|
|
||||||
do_sample=True
|
|
||||||
)
|
|
||||||
|
|
||||||
response = llm_tokenizer.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
elif "thank" in user_text_lower:
|
||||||
return response.strip()
|
return "You're welcome! Let me know if there's anything else I can help with."
|
||||||
|
|
||||||
|
elif "bye" in user_text_lower or "goodbye" in user_text_lower:
|
||||||
|
return "Goodbye! Have a great day!"
|
||||||
|
|
||||||
|
elif any(q in user_text_lower for q in ["what", "who", "where", "when", "why", "how"]):
|
||||||
|
return "I'm running in fallback mode and can't answer complex questions. Please try again when the main language model is available."
|
||||||
|
|
||||||
|
else:
|
||||||
|
return "I understand you said something about that. Unfortunately, I'm running in fallback mode with limited capabilities. Please try again later when the main model is available."
|
||||||
|
|
||||||
def generate_audio_response(text, conversation_segments):
|
def generate_audio_response(text, conversation_segments):
|
||||||
"""Generate audio response using CSM"""
|
"""Generate audio response using CSM"""
|
||||||
# Use the last few conversation segments as context
|
try:
|
||||||
context_segments = conversation_segments[-4:] if len(conversation_segments) > 4 else conversation_segments
|
# Use the last few conversation segments as context
|
||||||
|
context_segments = conversation_segments[-4:] if len(conversation_segments) > 4 else conversation_segments
|
||||||
# Generate audio for bot response
|
|
||||||
audio = csm_generator.generate(
|
# Generate audio for bot response
|
||||||
text=text,
|
audio = csm_generator.generate(
|
||||||
speaker=1, # Bot is speaker 1
|
text=text,
|
||||||
context=context_segments,
|
speaker=1, # Bot is speaker 1
|
||||||
max_audio_length_ms=10000, # 10 seconds max
|
context=context_segments,
|
||||||
temperature=0.9,
|
max_audio_length_ms=10000, # 10 seconds max
|
||||||
topk=50
|
temperature=0.9,
|
||||||
)
|
topk=50
|
||||||
|
)
|
||||||
return audio
|
|
||||||
|
return audio
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error generating audio: {e}")
|
||||||
|
# Return silence as fallback
|
||||||
|
return torch.zeros(csm_generator.sample_rate * 3) # 3 seconds of silence
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# Ensure the existing index.html file is in the correct location
|
# Ensure the existing index.html file is in the correct location
|
||||||
@@ -253,4 +359,11 @@ if __name__ == '__main__':
|
|||||||
if os.path.exists('index.html') and not os.path.exists('templates/index.html'):
|
if os.path.exists('index.html') and not os.path.exists('templates/index.html'):
|
||||||
os.rename('index.html', 'templates/index.html')
|
os.rename('index.html', 'templates/index.html')
|
||||||
|
|
||||||
|
# Load models asynchronously before starting the server
|
||||||
|
print("Starting model loading...")
|
||||||
|
# In a production environment, you could load models in a separate thread
|
||||||
|
load_models()
|
||||||
|
|
||||||
|
# Start the server
|
||||||
|
print("Starting Flask SocketIO server...")
|
||||||
socketio.run(app, host='0.0.0.0', port=5000, debug=False)
|
socketio.run(app, host='0.0.0.0', port=5000, debug=False)
|
||||||
Reference in New Issue
Block a user