Demo Fixes 7
This commit is contained in:
@@ -25,6 +25,10 @@ import whisperx
|
||||
from generator import load_csm_1b, Segment
|
||||
from dataclasses import dataclass
|
||||
|
||||
# Add these imports at the top
|
||||
import psutil
|
||||
import gc
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
@@ -68,13 +72,13 @@ def load_models():
|
||||
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 0})
|
||||
|
||||
logger.info("Loading CSM 1B model...")
|
||||
# CSM 1B loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 10, 'message': 'Loading CSM voice model'})
|
||||
models.generator = load_csm_1b(device=DEVICE)
|
||||
logger.info("CSM 1B model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'csm', 'status': 'loaded'})
|
||||
progress = 33
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': progress})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 33})
|
||||
if DEVICE == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
except Exception as e:
|
||||
@@ -83,8 +87,9 @@ def load_models():
|
||||
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
|
||||
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
|
||||
|
||||
logger.info("Loading Whisper ASR model...")
|
||||
# Whisper loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
|
||||
# Use regular Whisper instead of WhisperX to avoid compatibility issues
|
||||
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
||||
|
||||
@@ -96,16 +101,16 @@ def load_models():
|
||||
|
||||
logger.info("Whisper ASR model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
|
||||
progress = 66
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': progress})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
|
||||
if DEVICE == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading ASR model: {str(e)}")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
|
||||
|
||||
logger.info("Loading Llama 3.2 model...")
|
||||
# Llama loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 70, 'message': 'Loading language model'})
|
||||
models.llm = AutoModelForCausalLM.from_pretrained(
|
||||
"meta-llama/Llama-3.2-1B",
|
||||
device_map=DEVICE,
|
||||
@@ -123,8 +128,8 @@ def load_models():
|
||||
|
||||
logger.info("Llama 3.2 model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'llm', 'status': 'loaded'})
|
||||
progress = 100
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loaded', 'progress': progress})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 100, 'message': 'All models loaded successfully'})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loaded'})
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading Llama 3.2 model: {str(e)}")
|
||||
socketio.emit('model_status', {'model': 'llm', 'status': 'error', 'message': str(e)})
|
||||
@@ -184,6 +189,39 @@ def system_status():
|
||||
}
|
||||
})
|
||||
|
||||
# Add a new endpoint to check system resources
|
||||
@app.route('/api/system_resources')
|
||||
def system_resources():
|
||||
# Get CPU usage
|
||||
cpu_percent = psutil.cpu_percent(interval=0.1)
|
||||
|
||||
# Get memory usage
|
||||
memory = psutil.virtual_memory()
|
||||
memory_used_gb = memory.used / (1024 ** 3)
|
||||
memory_total_gb = memory.total / (1024 ** 3)
|
||||
memory_percent = memory.percent
|
||||
|
||||
# Get GPU memory if available
|
||||
gpu_memory = {}
|
||||
if torch.cuda.is_available():
|
||||
for i in range(torch.cuda.device_count()):
|
||||
gpu_memory[f"gpu_{i}"] = {
|
||||
"allocated": torch.cuda.memory_allocated(i) / (1024 ** 3),
|
||||
"reserved": torch.cuda.memory_reserved(i) / (1024 ** 3),
|
||||
"max_allocated": torch.cuda.max_memory_allocated(i) / (1024 ** 3)
|
||||
}
|
||||
|
||||
return jsonify({
|
||||
"cpu_percent": cpu_percent,
|
||||
"memory": {
|
||||
"used_gb": memory_used_gb,
|
||||
"total_gb": memory_total_gb,
|
||||
"percent": memory_percent
|
||||
},
|
||||
"gpu_memory": gpu_memory,
|
||||
"active_sessions": len(active_conversations)
|
||||
})
|
||||
|
||||
# Socket event handlers
|
||||
@socketio.on('connect')
|
||||
def handle_connect(auth=None):
|
||||
@@ -331,18 +369,33 @@ def process_audio_and_respond(session_id, data):
|
||||
speech_array, sampling_rate = librosa.load(temp_path, sr=16000)
|
||||
|
||||
# Convert to required format
|
||||
input_features = models.asr_processor(
|
||||
processor_output = models.asr_processor(
|
||||
speech_array,
|
||||
sampling_rate=sampling_rate,
|
||||
return_tensors="pt"
|
||||
).input_features.to(DEVICE)
|
||||
|
||||
# Generate token ids
|
||||
predicted_ids = models.asr_model.generate(
|
||||
input_features,
|
||||
language="en",
|
||||
task="transcribe"
|
||||
return_tensors="pt",
|
||||
padding=True, # Add padding
|
||||
return_attention_mask=True # Request attention mask
|
||||
)
|
||||
input_features = processor_output.input_features.to(DEVICE)
|
||||
attention_mask = processor_output.get('attention_mask', None)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.to(DEVICE)
|
||||
|
||||
# Generate token ids with attention mask
|
||||
predicted_ids = models.asr_model.generate(
|
||||
input_features,
|
||||
attention_mask=attention_mask,
|
||||
language="en",
|
||||
task="transcribe"
|
||||
)
|
||||
else:
|
||||
# Fallback if attention mask is not available
|
||||
predicted_ids = models.asr_model.generate(
|
||||
input_features,
|
||||
language="en",
|
||||
task="transcribe"
|
||||
)
|
||||
|
||||
# Decode the predicted ids to text
|
||||
user_text = models.asr_processor.batch_decode(
|
||||
|
||||
Reference in New Issue
Block a user