Demo Update 20
This commit is contained in:
@@ -260,6 +260,47 @@
|
||||
font-size: 0.8em;
|
||||
color: #777;
|
||||
}
|
||||
|
||||
/* Model status indicators */
|
||||
.model-status {
|
||||
display: flex;
|
||||
gap: 8px;
|
||||
}
|
||||
|
||||
.model-indicator {
|
||||
padding: 3px 6px;
|
||||
border-radius: 4px;
|
||||
font-size: 0.7em;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.model-indicator.loading {
|
||||
background-color: #ffd54f;
|
||||
color: #000;
|
||||
}
|
||||
|
||||
.model-indicator.loaded {
|
||||
background-color: #4CAF50;
|
||||
color: white;
|
||||
}
|
||||
|
||||
.model-indicator.error {
|
||||
background-color: #f44336;
|
||||
color: white;
|
||||
}
|
||||
|
||||
.message-timestamp {
|
||||
font-size: 0.7em;
|
||||
color: #888;
|
||||
margin-top: 4px;
|
||||
text-align: right;
|
||||
}
|
||||
|
||||
.simple-timestamp {
|
||||
font-size: 0.8em;
|
||||
color: #888;
|
||||
margin-top: 5px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
@@ -276,6 +317,13 @@
|
||||
<div id="statusDot" class="status-dot"></div>
|
||||
<span id="statusText">Disconnected</span>
|
||||
</div>
|
||||
|
||||
<!-- Add this model status panel -->
|
||||
<div class="model-status">
|
||||
<div id="csmStatus" class="model-indicator loading" title="Loading CSM model...">CSM</div>
|
||||
<div id="asrStatus" class="model-indicator loading" title="Loading ASR model...">ASR</div>
|
||||
<div id="llmStatus" class="model-indicator loading" title="Loading LLM model...">LLM</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="conversation" class="conversation"></div>
|
||||
</div>
|
||||
|
||||
@@ -1,7 +1,11 @@
|
||||
flask==2.2.5
|
||||
flask-socketio==5.3.6
|
||||
flask-cors==4.0.0
|
||||
torch==2.4.0
|
||||
torchaudio==2.4.0
|
||||
tokenizers==0.21.0
|
||||
transformers==4.49.0
|
||||
librosa==0.10.1
|
||||
huggingface_hub==0.28.1
|
||||
moshi==0.2.2
|
||||
torchtune==0.4.0
|
||||
|
||||
@@ -56,12 +56,8 @@ class AppModels:
|
||||
generator = None
|
||||
tokenizer = None
|
||||
llm = None
|
||||
whisperx_model = None
|
||||
whisperx_align_model = None
|
||||
whisperx_align_metadata = None
|
||||
diarize_model = None
|
||||
|
||||
models = AppModels()
|
||||
asr_model = None
|
||||
asr_processor = None
|
||||
|
||||
def load_models():
|
||||
"""Load all required models"""
|
||||
@@ -76,16 +72,22 @@ def load_models():
|
||||
logger.error(f"Error loading CSM 1B model: {str(e)}")
|
||||
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
|
||||
|
||||
logger.info("Loading WhisperX model...")
|
||||
logger.info("Loading Whisper ASR model...")
|
||||
try:
|
||||
# Use WhisperX instead of the regular Whisper
|
||||
compute_type = "float16" if DEVICE == "cuda" else "float32"
|
||||
models.whisperx_model = whisperx.load_model("large-v2", DEVICE, compute_type=compute_type)
|
||||
logger.info("WhisperX model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'whisperx', 'status': 'loaded'})
|
||||
# Use regular Whisper instead of WhisperX to avoid compatibility issues
|
||||
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
||||
|
||||
# Use a smaller model for faster processing
|
||||
model_id = "openai/whisper-small"
|
||||
|
||||
models.asr_processor = WhisperProcessor.from_pretrained(model_id)
|
||||
models.asr_model = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
|
||||
|
||||
logger.info("Whisper ASR model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading WhisperX model: {str(e)}")
|
||||
socketio.emit('model_status', {'model': 'whisperx', 'status': 'error', 'message': str(e)})
|
||||
logger.error(f"Error loading ASR model: {str(e)}")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
|
||||
|
||||
logger.info("Loading Llama 3.2 model...")
|
||||
try:
|
||||
@@ -141,7 +143,8 @@ def health_check():
|
||||
"models_loaded": models.generator is not None and models.llm is not None
|
||||
})
|
||||
|
||||
# Add a system status endpoint
|
||||
# Fix the system_status function:
|
||||
|
||||
@app.route('/api/status')
|
||||
def system_status():
|
||||
return jsonify({
|
||||
@@ -150,7 +153,7 @@ def system_status():
|
||||
"device": DEVICE,
|
||||
"models": {
|
||||
"generator": models.generator is not None,
|
||||
"whisperx": models.whisperx_model is not None,
|
||||
"asr": models.asr_model is not None, # Use the correct model name
|
||||
"llm": models.llm is not None
|
||||
}
|
||||
})
|
||||
@@ -260,8 +263,8 @@ def process_audio_queue(session_id, q):
|
||||
del user_queues[session_id]
|
||||
|
||||
def process_audio_and_respond(session_id, data):
|
||||
"""Process audio data and generate a response using WhisperX"""
|
||||
if models.generator is None or models.whisperx_model is None or models.llm is None:
|
||||
"""Process audio data and generate a response using standard Whisper"""
|
||||
if models.generator is None or models.asr_model is None or models.llm is None:
|
||||
logger.warning("Models not yet loaded!")
|
||||
with app.app_context():
|
||||
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
|
||||
@@ -293,47 +296,33 @@ def process_audio_and_respond(session_id, data):
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
# Load audio using WhisperX
|
||||
# Notify client that transcription is starting
|
||||
with app.app_context():
|
||||
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
|
||||
|
||||
# Load audio with WhisperX instead of torchaudio
|
||||
audio = whisperx.load_audio(temp_path)
|
||||
# Load audio for ASR processing
|
||||
import librosa
|
||||
speech_array, sampling_rate = librosa.load(temp_path, sr=16000)
|
||||
|
||||
# Transcribe using WhisperX
|
||||
batch_size = 16 # Adjust based on available memory
|
||||
result = models.whisperx_model.transcribe(audio, batch_size=batch_size)
|
||||
# Convert to required format
|
||||
input_features = models.asr_processor(
|
||||
speech_array,
|
||||
sampling_rate=sampling_rate,
|
||||
return_tensors="pt"
|
||||
).input_features.to(DEVICE)
|
||||
|
||||
# Get the detected language
|
||||
language_code = result["language"]
|
||||
logger.info(f"Detected language: {language_code}")
|
||||
|
||||
# Load alignment model if not already loaded
|
||||
if models.whisperx_align_model is None or language_code != getattr(models, 'last_language', None):
|
||||
# Clear previous models to save memory
|
||||
if models.whisperx_align_model is not None:
|
||||
del models.whisperx_align_model
|
||||
del models.whisperx_align_metadata
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache() if DEVICE == "cuda" else None
|
||||
|
||||
models.whisperx_align_model, models.whisperx_align_metadata = whisperx.load_align_model(
|
||||
language_code=language_code, device=DEVICE
|
||||
)
|
||||
models.last_language = language_code
|
||||
|
||||
# Align the transcript
|
||||
result = whisperx.align(
|
||||
result["segments"],
|
||||
models.whisperx_align_model,
|
||||
models.whisperx_align_metadata,
|
||||
audio,
|
||||
DEVICE,
|
||||
return_char_alignments=False
|
||||
# Generate token ids
|
||||
predicted_ids = models.asr_model.generate(
|
||||
input_features,
|
||||
language="en",
|
||||
task="transcribe"
|
||||
)
|
||||
|
||||
# Combine all segments into a single transcript
|
||||
user_text = ' '.join([segment['text'] for segment in result['segments']])
|
||||
# Decode the predicted ids to text
|
||||
user_text = models.asr_processor.batch_decode(
|
||||
predicted_ids,
|
||||
skip_special_tokens=True
|
||||
)[0]
|
||||
|
||||
# If no text was recognized, don't process further
|
||||
if not user_text or len(user_text.strip()) == 0:
|
||||
@@ -369,8 +358,7 @@ def process_audio_and_respond(session_id, data):
|
||||
with app.app_context():
|
||||
socketio.emit('transcription', {
|
||||
'text': user_text,
|
||||
'speaker': speaker_id,
|
||||
'segments': result['segments'] # Send detailed segments info
|
||||
'speaker': speaker_id
|
||||
}, room=session_id)
|
||||
|
||||
# Generate AI response using Llama
|
||||
|
||||
@@ -105,8 +105,25 @@ function setupSocketConnection() {
|
||||
});
|
||||
|
||||
state.socket.on('error', (data) => {
|
||||
addSystemMessage(`Error: ${data.message}`);
|
||||
console.error('Server error:', data.message);
|
||||
|
||||
// Make the error more user-friendly
|
||||
let userMessage = data.message;
|
||||
|
||||
// Check for common errors and provide more helpful messages
|
||||
if (data.message.includes('Models still loading')) {
|
||||
userMessage = 'The AI models are still loading. Please wait a moment and try again.';
|
||||
} else if (data.message.includes('No speech detected')) {
|
||||
userMessage = 'No speech was detected. Please speak clearly and try again.';
|
||||
}
|
||||
|
||||
addSystemMessage(`Error: ${userMessage}`);
|
||||
|
||||
// Reset button state if it was processing
|
||||
if (elements.streamButton.classList.contains('processing')) {
|
||||
elements.streamButton.classList.remove('processing');
|
||||
elements.streamButton.innerHTML = '<i class="fas fa-microphone"></i> Start Conversation';
|
||||
}
|
||||
});
|
||||
|
||||
// Register message handlers
|
||||
@@ -115,6 +132,9 @@ function setupSocketConnection() {
|
||||
state.socket.on('streaming_status', handleStreamingStatus);
|
||||
state.socket.on('processing_status', handleProcessingStatus);
|
||||
|
||||
// Add model status handlers
|
||||
state.socket.on('model_status', handleModelStatusUpdate);
|
||||
|
||||
// Handlers for incremental audio streaming
|
||||
state.socket.on('audio_response_start', handleAudioResponseStart);
|
||||
state.socket.on('audio_response_chunk', handleAudioResponseChunk);
|
||||
@@ -189,6 +209,27 @@ function startStreaming() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if models are loaded via the API
|
||||
fetch('/api/status')
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (!data.models.generator || !data.models.asr || !data.models.llm) {
|
||||
addSystemMessage('Still loading AI models. Please wait...');
|
||||
return;
|
||||
}
|
||||
|
||||
// Continue with recording if models are loaded
|
||||
initializeRecording();
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Error checking model status:', error);
|
||||
// Try anyway, the server will respond with an error if models aren't ready
|
||||
initializeRecording();
|
||||
});
|
||||
}
|
||||
|
||||
// Extracted the recording initialization to a separate function
|
||||
function initializeRecording() {
|
||||
// Request microphone access
|
||||
navigator.mediaDevices.getUserMedia({ audio: true, video: false })
|
||||
.then(stream => {
|
||||
@@ -600,6 +641,13 @@ function addMessage(text, type) {
|
||||
textElement.textContent = text;
|
||||
messageDiv.appendChild(textElement);
|
||||
|
||||
// Add timestamp to every message
|
||||
const timestamp = new Date().toLocaleTimeString();
|
||||
const timeLabel = document.createElement('div');
|
||||
timeLabel.className = 'message-timestamp';
|
||||
timeLabel.textContent = timestamp;
|
||||
messageDiv.appendChild(timeLabel);
|
||||
|
||||
elements.conversation.appendChild(messageDiv);
|
||||
|
||||
// Auto-scroll to the bottom
|
||||
@@ -668,6 +716,13 @@ function handleTranscription(data) {
|
||||
// Add the timestamp elements to the message
|
||||
messageDiv.appendChild(toggleButton);
|
||||
messageDiv.appendChild(timestampsContainer);
|
||||
} else {
|
||||
// No timestamp data available - add a simple timestamp for the entire message
|
||||
const timestamp = new Date().toLocaleTimeString();
|
||||
const timeLabel = document.createElement('div');
|
||||
timeLabel.className = 'simple-timestamp';
|
||||
timeLabel.textContent = timestamp;
|
||||
messageDiv.appendChild(timeLabel);
|
||||
}
|
||||
|
||||
return messageDiv;
|
||||
@@ -854,6 +909,52 @@ function finalizeStreamingAudio() {
|
||||
streamingAudio.audioElement = null;
|
||||
}
|
||||
|
||||
// Handle model status updates
|
||||
function handleModelStatusUpdate(data) {
|
||||
const { model, status, message } = data;
|
||||
|
||||
if (status === 'loaded') {
|
||||
console.log(`Model ${model} loaded successfully`);
|
||||
addSystemMessage(`${model.toUpperCase()} model loaded successfully`);
|
||||
|
||||
// Update UI to show model is ready
|
||||
const modelStatusElement = document.getElementById(`${model}Status`);
|
||||
if (modelStatusElement) {
|
||||
modelStatusElement.classList.remove('loading');
|
||||
modelStatusElement.classList.add('loaded');
|
||||
modelStatusElement.title = 'Model loaded successfully';
|
||||
}
|
||||
|
||||
// Check if the required models are loaded to enable conversation
|
||||
checkAllModelsLoaded();
|
||||
} else if (status === 'error') {
|
||||
console.error(`Error loading ${model} model: ${message}`);
|
||||
addSystemMessage(`Error loading ${model.toUpperCase()} model: ${message}`);
|
||||
|
||||
// Update UI to show model loading failed
|
||||
const modelStatusElement = document.getElementById(`${model}Status`);
|
||||
if (modelStatusElement) {
|
||||
modelStatusElement.classList.remove('loading');
|
||||
modelStatusElement.classList.add('error');
|
||||
modelStatusElement.title = `Error: ${message}`;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check if all required models are loaded and enable UI accordingly
|
||||
function checkAllModelsLoaded() {
|
||||
// When all models are loaded, enable the stream button if it was disabled
|
||||
const allLoaded =
|
||||
document.getElementById('csmStatus')?.classList.contains('loaded') &&
|
||||
document.getElementById('asrStatus')?.classList.contains('loaded') &&
|
||||
document.getElementById('llmStatus')?.classList.contains('loaded');
|
||||
|
||||
if (allLoaded) {
|
||||
elements.streamButton.disabled = false;
|
||||
addSystemMessage('All models loaded. Ready for conversation!');
|
||||
}
|
||||
}
|
||||
|
||||
// Add CSS styles for new UI elements
|
||||
document.addEventListener('DOMContentLoaded', function() {
|
||||
// Add styles for processing state and timestamps
|
||||
|
||||
Reference in New Issue
Block a user