Demo Update 21

This commit is contained in:
2025-03-30 07:18:14 -04:00
parent e1c66f1f59
commit a4f282fbcc
3 changed files with 552 additions and 51 deletions

View File

@@ -1,86 +1,225 @@
<!DOCTYPE html> <!DOCTYPE html>
<html lang="en"> <html lang="en">
<head> <head>
<meta charset="UTF-8"> <meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Audio Conversation Bot</title> <title>Voice Assistant - CSM & Whisper</title>
<script src="https://cdn.socket.io/4.6.0/socket.io.min.js"></script> <script src="https://cdn.socket.io/4.6.0/socket.io.min.js"></script>
<style> <style>
body { body {
font-family: Arial, sans-serif; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
max-width: 800px; max-width: 800px;
margin: 0 auto; margin: 0 auto;
padding: 20px; padding: 20px;
background-color: #f5f7fa;
color: #333;
} }
h1 {
color: #2c3e50;
text-align: center;
margin-bottom: 30px;
}
#conversation { #conversation {
height: 400px; height: 400px;
border: 1px solid #ccc; border: 1px solid #ddd;
padding: 15px; border-radius: 10px;
padding: 20px;
margin-bottom: 20px; margin-bottom: 20px;
overflow-y: auto; overflow-y: auto;
background-color: white;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
} }
.message-container {
display: flex;
flex-direction: column;
margin-bottom: 15px;
}
.user-message-container {
align-items: flex-end;
}
.bot-message-container {
align-items: flex-start;
}
.message {
max-width: 80%;
padding: 12px;
border-radius: 18px;
position: relative;
word-break: break-word;
}
.user-message { .user-message {
background-color: #e1f5fe; background-color: #dcf8c6;
padding: 10px; color: #000;
border-radius: 8px; border-bottom-right-radius: 4px;
margin-bottom: 10px;
align-self: flex-end;
} }
.bot-message { .bot-message {
background-color: #f1f1f1; background-color: #f1f0f0;
padding: 10px; color: #000;
border-radius: 8px; border-bottom-left-radius: 4px;
margin-bottom: 10px;
} }
.message-label {
font-size: 0.8em;
margin-bottom: 4px;
color: #657786;
}
#controls { #controls {
display: flex; display: flex;
gap: 10px; gap: 10px;
justify-content: center;
margin-bottom: 15px;
} }
button { button {
padding: 10px 20px; padding: 12px 24px;
font-size: 16px; font-size: 16px;
cursor: pointer; cursor: pointer;
border-radius: 50px;
border: none;
outline: none;
transition: all 0.3s ease;
} }
#recordButton { #recordButton {
background-color: #4CAF50; background-color: #4CAF50;
color: white; color: white;
border: none; width: 200px;
border-radius: 4px; box-shadow: 0 4px 8px rgba(76, 175, 80, 0.3);
} }
#recordButton:hover {
background-color: #45a049;
transform: translateY(-2px);
}
#recordButton.recording { #recordButton.recording {
background-color: #f44336; background-color: #f44336;
animation: pulse 1.5s infinite;
box-shadow: 0 4px 8px rgba(244, 67, 54, 0.3);
} }
@keyframes pulse {
0% {
transform: scale(1);
}
50% {
transform: scale(1.05);
}
100% {
transform: scale(1);
}
}
#status { #status {
margin-top: 10px; text-align: center;
margin-top: 15px;
font-style: italic; font-style: italic;
color: #657786;
}
.audio-wave {
display: flex;
justify-content: center;
align-items: center;
height: 40px;
gap: 3px;
}
.audio-wave span {
display: block;
width: 3px;
height: 100%;
background-color: #4CAF50;
animation: wave 1.5s infinite ease-in-out;
border-radius: 6px;
}
.audio-wave span:nth-child(2) {
animation-delay: 0.2s;
}
.audio-wave span:nth-child(3) {
animation-delay: 0.4s;
}
.audio-wave span:nth-child(4) {
animation-delay: 0.6s;
}
.audio-wave span:nth-child(5) {
animation-delay: 0.8s;
}
@keyframes wave {
0%, 100% {
height: 8px;
}
50% {
height: 30px;
}
}
.hidden {
display: none;
}
.transcription-info {
font-size: 0.8em;
color: #888;
margin-top: 4px;
text-align: right;
} }
</style> </style>
</head> </head>
<body> <body>
<h1>Audio Conversation Bot</h1> <h1>Voice Assistant with CSM & Whisper</h1>
<div id="conversation"></div> <div id="conversation"></div>
<div id="controls"> <div id="controls">
<button id="recordButton">Hold to Speak</button> <button id="recordButton">Hold to Speak</button>
</div> </div>
<div id="status">Not connected</div>
<div id="audioWave" class="audio-wave hidden">
<span></span>
<span></span>
<span></span>
<span></span>
<span></span>
</div>
<div id="status">Connecting to server...</div>
<script> <script>
const socket = io(); const socket = io();
const recordButton = document.getElementById('recordButton'); const recordButton = document.getElementById('recordButton');
const conversation = document.getElementById('conversation'); const conversation = document.getElementById('conversation');
const status = document.getElementById('status'); const status = document.getElementById('status');
const audioWave = document.getElementById('audioWave');
let mediaRecorder; let mediaRecorder;
let audioChunks = []; let audioChunks = [];
let isRecording = false; let isRecording = false;
let audioSendInterval;
let sessionActive = false;
// Initialize audio context and analyzer // Initialize audio context
const audioContext = new (window.AudioContext || window.webkitAudioContext)(); const audioContext = new (window.AudioContext || window.webkitAudioContext)();
// Connect to server // Connect to server
socket.on('connect', () => { socket.on('connect', () => {
status.textContent = 'Connected to server'; status.textContent = 'Connected to server';
sessionActive = true;
});
socket.on('disconnect', () => {
status.textContent = 'Disconnected from server';
sessionActive = false;
}); });
socket.on('ready', (data) => { socket.on('ready', (data) => {
@@ -90,28 +229,59 @@
socket.on('transcription', (data) => { socket.on('transcription', (data) => {
addMessage('user', data.text); addMessage('user', data.text);
status.textContent = 'Assistant is thinking...';
}); });
socket.on('audio_response', (data) => { socket.on('audio_response', (data) => {
// Play audio // Play audio
status.textContent = 'Playing response...';
const audio = new Audio('data:audio/wav;base64,' + data.audio); const audio = new Audio('data:audio/wav;base64,' + data.audio);
audio.play();
audio.onended = () => {
status.textContent = 'Ready to record';
};
audio.onerror = () => {
status.textContent = 'Error playing audio';
console.error('Error playing audio response');
};
audio.play().catch(err => {
status.textContent = 'Error playing audio: ' + err.message;
console.error('Error playing audio:', err);
});
// Display text // Display text
addMessage('bot', data.text); addMessage('bot', data.text);
}); });
socket.on('error', (data) => { socket.on('error', (data) => {
status.textContent = data.message; status.textContent = 'Error: ' + data.message;
console.error(data.message); console.error('Server error:', data.message);
}); });
function setupAudioRecording() { function setupAudioRecording() {
// Check if browser supports required APIs
if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
status.textContent = 'Your browser does not support audio recording';
return;
}
// Get user media // Get user media
navigator.mediaDevices.getUserMedia({ audio: true }) navigator.mediaDevices.getUserMedia({ audio: true })
.then(stream => { .then(stream => {
// Setup recording // Setup recording with better audio quality
mediaRecorder = new MediaRecorder(stream); const options = {
mimeType: 'audio/webm',
audioBitsPerSecond: 128000
};
try {
mediaRecorder = new MediaRecorder(stream, options);
} catch (e) {
// Fallback if the specified options aren't supported
mediaRecorder = new MediaRecorder(stream);
}
mediaRecorder.ondataavailable = event => { mediaRecorder.ondataavailable = event => {
if (event.data.size > 0) { if (event.data.size > 0) {
@@ -120,36 +290,28 @@
}; };
mediaRecorder.onstop = () => { mediaRecorder.onstop = () => {
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' }); processRecording();
audioChunks = [];
// Convert to Float32Array for sending
const fileReader = new FileReader();
fileReader.onloadend = () => {
const arrayBuffer = fileReader.result;
const floatArray = new Float32Array(arrayBuffer);
// Convert to base64
const base64String = arrayBufferToBase64(floatArray.buffer);
socket.emit('audio_chunk', { audio: base64String });
};
fileReader.readAsArrayBuffer(audioBlob);
socket.emit('stop_speaking');
isRecording = false;
}; };
// Setup audio analyzer for chunking and VAD // Create audio analyzer for visualization
const source = audioContext.createMediaStreamSource(stream); const source = audioContext.createMediaStreamSource(stream);
const analyzer = audioContext.createAnalyser(); const analyzer = audioContext.createAnalyser();
analyzer.fftSize = 2048; analyzer.fftSize = 2048;
source.connect(analyzer); source.connect(analyzer);
// Setup button handlers // Setup button handlers with better touch handling
recordButton.addEventListener('mousedown', startRecording); recordButton.addEventListener('mousedown', startRecording);
recordButton.addEventListener('touchstart', startRecording); recordButton.addEventListener('touchstart', (e) => {
e.preventDefault(); // Prevent default touch behavior
startRecording();
});
recordButton.addEventListener('mouseup', stopRecording); recordButton.addEventListener('mouseup', stopRecording);
recordButton.addEventListener('touchend', stopRecording); recordButton.addEventListener('touchend', (e) => {
e.preventDefault();
stopRecording();
});
recordButton.addEventListener('mouseleave', stopRecording); recordButton.addEventListener('mouseleave', stopRecording);
status.textContent = 'Ready to record'; status.textContent = 'Ready to record';
@@ -161,12 +323,13 @@
} }
function startRecording() { function startRecording() {
if (!isRecording) { if (!isRecording && sessionActive) {
audioChunks = []; audioChunks = [];
mediaRecorder.start(100); // Collect data in 100ms chunks mediaRecorder.start(100); // Collect data in 100ms chunks
recordButton.classList.add('recording'); recordButton.classList.add('recording');
recordButton.textContent = 'Release to Stop'; recordButton.textContent = 'Release to Stop';
status.textContent = 'Recording...'; status.textContent = 'Recording...';
audioWave.classList.remove('hidden');
isRecording = true; isRecording = true;
socket.emit('start_speaking'); socket.emit('start_speaking');
@@ -186,15 +349,82 @@
mediaRecorder.stop(); mediaRecorder.stop();
recordButton.classList.remove('recording'); recordButton.classList.remove('recording');
recordButton.textContent = 'Hold to Speak'; recordButton.textContent = 'Hold to Speak';
status.textContent = 'Processing...'; status.textContent = 'Processing speech...';
audioWave.classList.add('hidden');
isRecording = false;
} }
} }
function processRecording() {
if (audioChunks.length === 0) {
status.textContent = 'No audio recorded';
return;
}
const audioBlob = new Blob(audioChunks, { type: 'audio/webm' });
// Convert to ArrayBuffer for processing
const fileReader = new FileReader();
fileReader.onloadend = () => {
try {
const arrayBuffer = fileReader.result;
// Convert to Float32Array - this works better with WebAudio API
const audioData = convertToFloat32(arrayBuffer);
// Convert to base64 for sending
const base64String = arrayBufferToBase64(audioData.buffer);
socket.emit('audio_chunk', { audio: base64String });
// Signal end of speech
socket.emit('stop_speaking');
} catch (e) {
console.error('Error processing audio:', e);
status.textContent = 'Error processing audio';
}
};
fileReader.onerror = () => {
status.textContent = 'Error reading audio data';
};
fileReader.readAsArrayBuffer(audioBlob);
}
function convertToFloat32(arrayBuffer) {
// Get raw audio data as Int16 (common format for audio)
const int16Array = new Int16Array(arrayBuffer);
// Convert to Float32 (normalize between -1 and 1)
const float32Array = new Float32Array(int16Array.length);
for (let i = 0; i < int16Array.length; i++) {
float32Array[i] = int16Array[i] / 32768.0;
}
return float32Array;
}
function addMessage(sender, text) { function addMessage(sender, text) {
const containerDiv = document.createElement('div');
containerDiv.className = sender === 'user' ? 'message-container user-message-container' : 'message-container bot-message-container';
const labelDiv = document.createElement('div');
labelDiv.className = 'message-label';
labelDiv.textContent = sender === 'user' ? 'You' : 'Assistant';
containerDiv.appendChild(labelDiv);
const messageDiv = document.createElement('div'); const messageDiv = document.createElement('div');
messageDiv.className = sender === 'user' ? 'user-message' : 'bot-message'; messageDiv.className = sender === 'user' ? 'message user-message' : 'message bot-message';
messageDiv.textContent = text; messageDiv.textContent = text;
conversation.appendChild(messageDiv); containerDiv.appendChild(messageDiv);
if (sender === 'user') {
const infoDiv = document.createElement('div');
infoDiv.className = 'transcription-info';
infoDiv.textContent = 'Transcribed with Whisper';
containerDiv.appendChild(infoDiv);
}
conversation.appendChild(containerDiv);
conversation.scrollTop = conversation.scrollHeight; conversation.scrollTop = conversation.scrollHeight;
} }
@@ -207,6 +437,20 @@
} }
return window.btoa(binary); return window.btoa(binary);
} }
// Handle page visibility change to avoid issues with background tabs
document.addEventListener('visibilitychange', () => {
if (document.hidden && isRecording) {
stopRecording();
}
});
// Clean disconnection when page is closed
window.addEventListener('beforeunload', () => {
if (socket && socket.connected) {
socket.disconnect();
}
});
</script> </script>
</body> </body>
</html> </html>

1
Backend/req.txt Normal file
View File

@@ -0,0 +1 @@
pip install faster-whisper

256
Backend/server.py Normal file
View File

@@ -0,0 +1,256 @@
import os
import io
import base64
import time
import torch
import torchaudio
import numpy as np
from flask import Flask, render_template, request
from flask_socketio import SocketIO, emit
from transformers import AutoModelForCausalLM, AutoTokenizer
from faster_whisper import WhisperModel
from generator import load_csm_1b, Segment
from collections import deque
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key'
socketio = SocketIO(app, cors_allowed_origins="*")
# Select the best available device
if torch.cuda.is_available():
device = "cuda"
whisper_compute_type = "float16"
elif torch.backends.mps.is_available():
device = "mps"
whisper_compute_type = "float32"
else:
device = "cpu"
whisper_compute_type = "int8"
print(f"Using device: {device}")
# Initialize Faster-Whisper for transcription
print("Loading Whisper model...")
whisper_model = WhisperModel("base", device=device, compute_type=whisper_compute_type)
# Initialize CSM model for audio generation
print("Loading CSM model...")
csm_generator = load_csm_1b(device=device)
# Initialize Llama 3.2 model for response generation
print("Loading Llama 3.2 model...")
llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
llm_model = AutoModelForCausalLM.from_pretrained(
llm_model_id,
torch_dtype=torch.bfloat16,
device_map=device
)
# Store conversation context
conversation_context = {} # session_id -> context
@app.route('/')
def index():
return render_template('index.html')
@socketio.on('connect')
def handle_connect():
print(f"Client connected: {request.sid}")
conversation_context[request.sid] = {
'segments': [],
'speakers': [0, 1], # 0 = user, 1 = bot
'audio_buffer': deque(maxlen=10), # Store recent audio chunks
'is_speaking': False,
'silence_start': None
}
emit('ready', {'message': 'Connection established'})
@socketio.on('disconnect')
def handle_disconnect():
print(f"Client disconnected: {request.sid}")
if request.sid in conversation_context:
del conversation_context[request.sid]
@socketio.on('start_speaking')
def handle_start_speaking():
if request.sid in conversation_context:
conversation_context[request.sid]['is_speaking'] = True
conversation_context[request.sid]['audio_buffer'].clear()
print(f"User {request.sid} started speaking")
@socketio.on('audio_chunk')
def handle_audio_chunk(data):
if request.sid not in conversation_context:
return
context = conversation_context[request.sid]
# Decode audio data
audio_data = base64.b64decode(data['audio'])
audio_numpy = np.frombuffer(audio_data, dtype=np.float32)
audio_tensor = torch.tensor(audio_numpy)
# Add to buffer
context['audio_buffer'].append(audio_tensor)
# Check for silence to detect end of speech
if context['is_speaking'] and is_silence(audio_tensor):
if context['silence_start'] is None:
context['silence_start'] = time.time()
elif time.time() - context['silence_start'] > 1.0: # 1 second of silence
# Process the complete utterance
process_user_utterance(request.sid)
else:
context['silence_start'] = None
@socketio.on('stop_speaking')
def handle_stop_speaking():
if request.sid in conversation_context:
conversation_context[request.sid]['is_speaking'] = False
process_user_utterance(request.sid)
print(f"User {request.sid} stopped speaking")
def is_silence(audio_tensor, threshold=0.02):
"""Check if an audio chunk is silence based on amplitude threshold"""
return torch.mean(torch.abs(audio_tensor)) < threshold
def process_user_utterance(session_id):
"""Process completed user utterance, generate response and send audio back"""
context = conversation_context[session_id]
if not context['audio_buffer']:
return
# Combine audio chunks
full_audio = torch.cat(list(context['audio_buffer']), dim=0)
context['audio_buffer'].clear()
context['is_speaking'] = False
context['silence_start'] = None
# Save audio to temporary WAV file for Whisper transcription
temp_audio_path = f"temp_audio_{session_id}.wav"
torchaudio.save(
temp_audio_path,
full_audio.unsqueeze(0),
44100 # Assuming 44.1kHz from client
)
# Transcribe speech using Faster-Whisper
try:
segments, info = whisper_model.transcribe(temp_audio_path, beam_size=5)
# Collect all text from segments
user_text = ""
for segment in segments:
segment_text = segment.text.strip()
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment_text}")
user_text += segment_text + " "
user_text = user_text.strip()
# Cleanup temp file
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
if not user_text:
print("No speech detected.")
return
print(f"Transcribed: {user_text}")
# Add to conversation segments
user_segment = Segment(
text=user_text,
speaker=0, # User is speaker 0
audio=full_audio
)
context['segments'].append(user_segment)
# Generate bot response
bot_response = generate_llm_response(user_text, context['segments'])
print(f"Bot response: {bot_response}")
# Convert to audio using CSM
bot_audio = generate_audio_response(bot_response, context['segments'])
# Convert audio to base64 for sending over websocket
audio_bytes = io.BytesIO()
torchaudio.save(audio_bytes, bot_audio.unsqueeze(0).cpu(), csm_generator.sample_rate, format="wav")
audio_bytes.seek(0)
audio_b64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
# Add bot response to conversation history
bot_segment = Segment(
text=bot_response,
speaker=1, # Bot is speaker 1
audio=bot_audio
)
context['segments'].append(bot_segment)
# Send transcribed text to client
emit('transcription', {'text': user_text}, room=session_id)
# Send audio response to client
emit('audio_response', {
'audio': audio_b64,
'text': bot_response
}, room=session_id)
except Exception as e:
print(f"Error processing speech: {e}")
emit('error', {'message': f'Error processing speech: {str(e)}'}, room=session_id)
# Cleanup temp file in case of error
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
def generate_llm_response(user_text, conversation_segments):
"""Generate text response using Llama 3.2"""
# Format conversation history for the LLM
conversation_history = ""
for segment in conversation_segments[-5:]: # Use last 5 utterances for context
speaker_name = "User" if segment.speaker == 0 else "Assistant"
conversation_history += f"{speaker_name}: {segment.text}\n"
# Add the current user query
conversation_history += f"User: {user_text}\nAssistant:"
# Generate response
inputs = llm_tokenizer(conversation_history, return_tensors="pt").to(device)
output = llm_model.generate(
inputs.input_ids,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = llm_tokenizer.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response.strip()
def generate_audio_response(text, conversation_segments):
"""Generate audio response using CSM"""
# Use the last few conversation segments as context
context_segments = conversation_segments[-4:] if len(conversation_segments) > 4 else conversation_segments
# Generate audio for bot response
audio = csm_generator.generate(
text=text,
speaker=1, # Bot is speaker 1
context=context_segments,
max_audio_length_ms=10000, # 10 seconds max
temperature=0.9,
topk=50
)
return audio
if __name__ == '__main__':
# Ensure the existing index.html file is in the correct location
if not os.path.exists('templates'):
os.makedirs('templates')
if os.path.exists('index.html') and not os.path.exists('templates/index.html'):
os.rename('index.html', 'templates/index.html')
socketio.run(app, host='0.0.0.0', port=5000, debug=False)