Demo Fixes 13
This commit is contained in:
@@ -13,11 +13,6 @@ import requests
|
||||
import huggingface_hub
|
||||
from generator import load_csm_1b, Segment
|
||||
|
||||
# Force CPU mode regardless of what's available
|
||||
# This bypasses the CUDA/cuDNN library requirements
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Hide all CUDA devices
|
||||
torch.backends.cudnn.enabled = False # Disable cuDNN
|
||||
|
||||
# Configure environment with longer timeouts
|
||||
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "600" # 10 minutes timeout for downloads
|
||||
requests.adapters.DEFAULT_TIMEOUT = 60 # Increase default requests timeout
|
||||
@@ -29,10 +24,55 @@ app = Flask(__name__)
|
||||
app.config['SECRET_KEY'] = 'your-secret-key'
|
||||
socketio = SocketIO(app, cors_allowed_origins="*")
|
||||
|
||||
# Force CPU regardless of what hardware is available
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
whisper_compute_type = "int8"
|
||||
print(f"Forcing CPU mode for all models")
|
||||
# Explicitly check for CUDA and print more detailed info
|
||||
print("\n=== CUDA Information ===")
|
||||
if torch.cuda.is_available():
|
||||
print(f"CUDA is available")
|
||||
print(f"CUDA version: {torch.version.cuda}")
|
||||
print(f"Number of GPUs: {torch.cuda.device_count()}")
|
||||
for i in range(torch.cuda.device_count()):
|
||||
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
||||
else:
|
||||
print("CUDA is not available")
|
||||
|
||||
# Check for cuDNN
|
||||
try:
|
||||
import ctypes
|
||||
ctypes.CDLL("libcudnn_ops_infer.so.8")
|
||||
print("cuDNN is available")
|
||||
except:
|
||||
print("cuDNN is not available (libcudnn_ops_infer.so.8 not found)")
|
||||
|
||||
# Check for other compute platforms
|
||||
if torch.backends.mps.is_available():
|
||||
print("MPS (Apple Silicon) is available")
|
||||
else:
|
||||
print("MPS is not available")
|
||||
print("========================\n")
|
||||
|
||||
# Check for CUDA availability and handle potential CUDA/cuDNN issues
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
# Try to initialize CUDA to check if libraries are properly loaded
|
||||
_ = torch.zeros(1).cuda()
|
||||
device = "cuda"
|
||||
whisper_compute_type = "float16"
|
||||
print("🟢 CUDA is available and initialized successfully")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
whisper_compute_type = "float32"
|
||||
print("🟢 MPS is available (Apple Silicon)")
|
||||
else:
|
||||
device = "cpu"
|
||||
whisper_compute_type = "int8"
|
||||
print("🟡 Using CPU (CUDA/MPS not available)")
|
||||
except Exception as e:
|
||||
print(f"🔴 Error initializing CUDA: {e}")
|
||||
print("🔴 Falling back to CPU")
|
||||
device = "cpu"
|
||||
whisper_compute_type = "int8"
|
||||
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# Initialize models with proper error handling
|
||||
whisper_model = None
|
||||
@@ -45,10 +85,10 @@ def load_models():
|
||||
|
||||
# Initialize Faster-Whisper for transcription
|
||||
try:
|
||||
print("Loading Whisper model on CPU...")
|
||||
print("Loading Whisper model...")
|
||||
# Import here to avoid immediate import errors if package is missing
|
||||
from faster_whisper import WhisperModel
|
||||
whisper_model = WhisperModel("tiny", device="cpu", compute_type="int8", download_root="./models/whisper")
|
||||
whisper_model = WhisperModel("base", device=device, compute_type=whisper_compute_type, download_root="./models/whisper")
|
||||
print("Whisper model loaded successfully")
|
||||
except Exception as e:
|
||||
print(f"Error loading Whisper model: {e}")
|
||||
@@ -56,8 +96,8 @@ def load_models():
|
||||
|
||||
# Initialize CSM model for audio generation
|
||||
try:
|
||||
print("Loading CSM model on CPU...")
|
||||
csm_generator = load_csm_1b(device="cpu")
|
||||
print("Loading CSM model...")
|
||||
csm_generator = load_csm_1b(device=device)
|
||||
print("CSM model loaded successfully")
|
||||
except Exception as e:
|
||||
print(f"Error loading CSM model: {e}")
|
||||
@@ -65,13 +105,15 @@ def load_models():
|
||||
|
||||
# Initialize Llama 3.2 model for response generation
|
||||
try:
|
||||
print("Loading Llama 3.2 model on CPU...")
|
||||
print("Loading Llama 3.2 model...")
|
||||
llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources
|
||||
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id, cache_dir="./models/llama")
|
||||
# Use the right data type based on device
|
||||
dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
||||
llm_model = AutoModelForCausalLM.from_pretrained(
|
||||
llm_model_id,
|
||||
torch_dtype=torch.float32, # Use float32 on CPU
|
||||
device_map="cpu",
|
||||
torch_dtype=dtype,
|
||||
device_map=device,
|
||||
cache_dir="./models/llama",
|
||||
low_cpu_mem_usage=True
|
||||
)
|
||||
@@ -358,8 +400,7 @@ if __name__ == '__main__':
|
||||
os.rename('index.html', 'templates/index.html')
|
||||
|
||||
# Load models asynchronously before starting the server
|
||||
print("Starting CPU-only model loading...")
|
||||
# In a production environment, you could load models in a separate thread
|
||||
print("Starting model loading...")
|
||||
load_models()
|
||||
|
||||
# Start the server
|
||||
|
||||
Reference in New Issue
Block a user