Demo Fixes 13

This commit is contained in:
2025-03-30 08:04:16 -04:00
parent 647a915953
commit a55b3f52a4

View File

@@ -13,11 +13,6 @@ import requests
import huggingface_hub import huggingface_hub
from generator import load_csm_1b, Segment from generator import load_csm_1b, Segment
# Force CPU mode regardless of what's available
# This bypasses the CUDA/cuDNN library requirements
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Hide all CUDA devices
torch.backends.cudnn.enabled = False # Disable cuDNN
# Configure environment with longer timeouts # Configure environment with longer timeouts
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "600" # 10 minutes timeout for downloads os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "600" # 10 minutes timeout for downloads
requests.adapters.DEFAULT_TIMEOUT = 60 # Increase default requests timeout requests.adapters.DEFAULT_TIMEOUT = 60 # Increase default requests timeout
@@ -29,10 +24,55 @@ app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key' app.config['SECRET_KEY'] = 'your-secret-key'
socketio = SocketIO(app, cors_allowed_origins="*") socketio = SocketIO(app, cors_allowed_origins="*")
# Force CPU regardless of what hardware is available # Explicitly check for CUDA and print more detailed info
device = "cuda" if torch.cuda.is_available() else "cpu" print("\n=== CUDA Information ===")
whisper_compute_type = "int8" if torch.cuda.is_available():
print(f"Forcing CPU mode for all models") print(f"CUDA is available")
print(f"CUDA version: {torch.version.cuda}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
print("CUDA is not available")
# Check for cuDNN
try:
import ctypes
ctypes.CDLL("libcudnn_ops_infer.so.8")
print("cuDNN is available")
except:
print("cuDNN is not available (libcudnn_ops_infer.so.8 not found)")
# Check for other compute platforms
if torch.backends.mps.is_available():
print("MPS (Apple Silicon) is available")
else:
print("MPS is not available")
print("========================\n")
# Check for CUDA availability and handle potential CUDA/cuDNN issues
try:
if torch.cuda.is_available():
# Try to initialize CUDA to check if libraries are properly loaded
_ = torch.zeros(1).cuda()
device = "cuda"
whisper_compute_type = "float16"
print("🟢 CUDA is available and initialized successfully")
elif torch.backends.mps.is_available():
device = "mps"
whisper_compute_type = "float32"
print("🟢 MPS is available (Apple Silicon)")
else:
device = "cpu"
whisper_compute_type = "int8"
print("🟡 Using CPU (CUDA/MPS not available)")
except Exception as e:
print(f"🔴 Error initializing CUDA: {e}")
print("🔴 Falling back to CPU")
device = "cpu"
whisper_compute_type = "int8"
print(f"Using device: {device}")
# Initialize models with proper error handling # Initialize models with proper error handling
whisper_model = None whisper_model = None
@@ -45,10 +85,10 @@ def load_models():
# Initialize Faster-Whisper for transcription # Initialize Faster-Whisper for transcription
try: try:
print("Loading Whisper model on CPU...") print("Loading Whisper model...")
# Import here to avoid immediate import errors if package is missing # Import here to avoid immediate import errors if package is missing
from faster_whisper import WhisperModel from faster_whisper import WhisperModel
whisper_model = WhisperModel("tiny", device="cpu", compute_type="int8", download_root="./models/whisper") whisper_model = WhisperModel("base", device=device, compute_type=whisper_compute_type, download_root="./models/whisper")
print("Whisper model loaded successfully") print("Whisper model loaded successfully")
except Exception as e: except Exception as e:
print(f"Error loading Whisper model: {e}") print(f"Error loading Whisper model: {e}")
@@ -56,8 +96,8 @@ def load_models():
# Initialize CSM model for audio generation # Initialize CSM model for audio generation
try: try:
print("Loading CSM model on CPU...") print("Loading CSM model...")
csm_generator = load_csm_1b(device="cpu") csm_generator = load_csm_1b(device=device)
print("CSM model loaded successfully") print("CSM model loaded successfully")
except Exception as e: except Exception as e:
print(f"Error loading CSM model: {e}") print(f"Error loading CSM model: {e}")
@@ -65,13 +105,15 @@ def load_models():
# Initialize Llama 3.2 model for response generation # Initialize Llama 3.2 model for response generation
try: try:
print("Loading Llama 3.2 model on CPU...") print("Loading Llama 3.2 model...")
llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id, cache_dir="./models/llama") llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id, cache_dir="./models/llama")
# Use the right data type based on device
dtype = torch.bfloat16 if device != "cpu" else torch.float32
llm_model = AutoModelForCausalLM.from_pretrained( llm_model = AutoModelForCausalLM.from_pretrained(
llm_model_id, llm_model_id,
torch_dtype=torch.float32, # Use float32 on CPU torch_dtype=dtype,
device_map="cpu", device_map=device,
cache_dir="./models/llama", cache_dir="./models/llama",
low_cpu_mem_usage=True low_cpu_mem_usage=True
) )
@@ -358,8 +400,7 @@ if __name__ == '__main__':
os.rename('index.html', 'templates/index.html') os.rename('index.html', 'templates/index.html')
# Load models asynchronously before starting the server # Load models asynchronously before starting the server
print("Starting CPU-only model loading...") print("Starting model loading...")
# In a production environment, you could load models in a separate thread
load_models() load_models()
# Start the server # Start the server