Demo Fixes 8
This commit is contained in:
@@ -60,8 +60,11 @@ class AppModels:
|
|||||||
generator = None
|
generator = None
|
||||||
tokenizer = None
|
tokenizer = None
|
||||||
llm = None
|
llm = None
|
||||||
asr_model = None
|
whisperx_model = None
|
||||||
asr_processor = None
|
whisperx_align_model = None
|
||||||
|
whisperx_align_metadata = None
|
||||||
|
diarize_model = None
|
||||||
|
last_language = None
|
||||||
|
|
||||||
# Initialize the models object
|
# Initialize the models object
|
||||||
models = AppModels()
|
models = AppModels()
|
||||||
@@ -87,25 +90,27 @@ def load_models():
|
|||||||
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
|
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
|
||||||
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
|
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
|
||||||
|
|
||||||
# Whisper loading
|
# WhisperX loading
|
||||||
try:
|
try:
|
||||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
|
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
|
||||||
# Use regular Whisper instead of WhisperX to avoid compatibility issues
|
# Use WhisperX for better transcription with timestamps
|
||||||
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
import whisperx
|
||||||
|
|
||||||
# Use a smaller model for faster processing
|
# Use compute_type based on device
|
||||||
model_id = "openai/whisper-small"
|
compute_type = "float16" if DEVICE == "cuda" else "float32"
|
||||||
|
|
||||||
models.asr_processor = WhisperProcessor.from_pretrained(model_id)
|
# Load the WhisperX model (smaller model for faster processing)
|
||||||
models.asr_model = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
|
models.whisperx_model = whisperx.load_model("small", DEVICE, compute_type=compute_type)
|
||||||
|
|
||||||
logger.info("Whisper ASR model loaded successfully")
|
logger.info("WhisperX model loaded successfully")
|
||||||
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
|
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
|
||||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
|
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
|
||||||
if DEVICE == "cuda":
|
if DEVICE == "cuda":
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error loading ASR model: {str(e)}")
|
import traceback
|
||||||
|
error_details = traceback.format_exc()
|
||||||
|
logger.error(f"Error loading WhisperX model: {str(e)}\n{error_details}")
|
||||||
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
|
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
|
||||||
|
|
||||||
# Llama loading
|
# Llama loading
|
||||||
@@ -184,7 +189,7 @@ def system_status():
|
|||||||
"device": DEVICE,
|
"device": DEVICE,
|
||||||
"models": {
|
"models": {
|
||||||
"generator": models.generator is not None,
|
"generator": models.generator is not None,
|
||||||
"asr": models.asr_model is not None, # Use the correct model name
|
"asr": models.whisperx_model is not None, # Use the correct model name
|
||||||
"llm": models.llm is not None
|
"llm": models.llm is not None
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
@@ -327,8 +332,8 @@ def process_audio_queue(session_id, q):
|
|||||||
del user_queues[session_id]
|
del user_queues[session_id]
|
||||||
|
|
||||||
def process_audio_and_respond(session_id, data):
|
def process_audio_and_respond(session_id, data):
|
||||||
"""Process audio data and generate a response using standard Whisper"""
|
"""Process audio data and generate a response using WhisperX"""
|
||||||
if models.generator is None or models.asr_model is None or models.llm is None:
|
if models.generator is None or models.whisperx_model is None or models.llm is None:
|
||||||
logger.warning("Models not yet loaded!")
|
logger.warning("Models not yet loaded!")
|
||||||
with app.app_context():
|
with app.app_context():
|
||||||
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
|
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
|
||||||
@@ -364,44 +369,69 @@ def process_audio_and_respond(session_id, data):
|
|||||||
with app.app_context():
|
with app.app_context():
|
||||||
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
|
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
|
||||||
|
|
||||||
# Load audio for ASR processing
|
# Load audio using WhisperX
|
||||||
import librosa
|
import whisperx
|
||||||
speech_array, sampling_rate = librosa.load(temp_path, sr=16000)
|
audio = whisperx.load_audio(temp_path)
|
||||||
|
|
||||||
# Convert to required format
|
# Check audio length and add a warning for short clips
|
||||||
processor_output = models.asr_processor(
|
audio_length = len(audio) / 16000 # assuming 16kHz sample rate
|
||||||
speech_array,
|
if audio_length < 1.0:
|
||||||
sampling_rate=sampling_rate,
|
logger.warning(f"Audio is very short ({audio_length:.2f}s), may affect transcription quality")
|
||||||
return_tensors="pt",
|
|
||||||
padding=True, # Add padding
|
|
||||||
return_attention_mask=True # Request attention mask
|
|
||||||
)
|
|
||||||
input_features = processor_output.input_features.to(DEVICE)
|
|
||||||
attention_mask = processor_output.get('attention_mask', None)
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
# Transcribe using WhisperX
|
||||||
attention_mask = attention_mask.to(DEVICE)
|
batch_size = 16 # adjust based on your GPU memory
|
||||||
|
logger.info("Running WhisperX transcription...")
|
||||||
|
|
||||||
# Generate token ids with attention mask
|
# Handle the warning about audio being shorter than 30s by suppressing it
|
||||||
predicted_ids = models.asr_model.generate(
|
import warnings
|
||||||
input_features,
|
with warnings.catch_warnings():
|
||||||
attention_mask=attention_mask,
|
warnings.filterwarnings("ignore", message="audio is shorter than 30s")
|
||||||
language="en",
|
result = models.whisperx_model.transcribe(audio, batch_size=batch_size)
|
||||||
task="transcribe"
|
|
||||||
|
# Get the detected language
|
||||||
|
language_code = result["language"]
|
||||||
|
logger.info(f"Detected language: {language_code}")
|
||||||
|
|
||||||
|
# Check if alignment model needs to be loaded or updated
|
||||||
|
if models.whisperx_align_model is None or language_code != models.last_language:
|
||||||
|
# Clean up old models if they exist
|
||||||
|
if models.whisperx_align_model is not None:
|
||||||
|
del models.whisperx_align_model
|
||||||
|
del models.whisperx_align_metadata
|
||||||
|
if DEVICE == "cuda":
|
||||||
|
gc.collect()
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
# Load new alignment model for the detected language
|
||||||
|
logger.info(f"Loading alignment model for language: {language_code}")
|
||||||
|
models.whisperx_align_model, models.whisperx_align_metadata = whisperx.load_align_model(
|
||||||
|
language_code=language_code, device=DEVICE
|
||||||
)
|
)
|
||||||
else:
|
models.last_language = language_code
|
||||||
# Fallback if attention mask is not available
|
|
||||||
predicted_ids = models.asr_model.generate(
|
# Align the transcript to get word-level timestamps
|
||||||
input_features,
|
if result["segments"] and len(result["segments"]) > 0:
|
||||||
language="en",
|
logger.info("Aligning transcript...")
|
||||||
task="transcribe"
|
result = whisperx.align(
|
||||||
|
result["segments"],
|
||||||
|
models.whisperx_align_model,
|
||||||
|
models.whisperx_align_metadata,
|
||||||
|
audio,
|
||||||
|
DEVICE,
|
||||||
|
return_char_alignments=False
|
||||||
)
|
)
|
||||||
|
|
||||||
# Decode the predicted ids to text
|
# Process the segments for better output
|
||||||
user_text = models.asr_processor.batch_decode(
|
for segment in result["segments"]:
|
||||||
predicted_ids,
|
# Round timestamps for better display
|
||||||
skip_special_tokens=True
|
segment["start"] = round(segment["start"], 2)
|
||||||
)[0]
|
segment["end"] = round(segment["end"], 2)
|
||||||
|
# Add a confidence score if not present
|
||||||
|
if "confidence" not in segment:
|
||||||
|
segment["confidence"] = 1.0 # Default confidence
|
||||||
|
|
||||||
|
# Extract the full text from all segments
|
||||||
|
user_text = ' '.join([segment['text'] for segment in result['segments']])
|
||||||
|
|
||||||
# If no text was recognized, don't process further
|
# If no text was recognized, don't process further
|
||||||
if not user_text or len(user_text.strip()) == 0:
|
if not user_text or len(user_text.strip()) == 0:
|
||||||
@@ -433,11 +463,12 @@ def process_audio_and_respond(session_id, data):
|
|||||||
audio=waveform.squeeze()
|
audio=waveform.squeeze()
|
||||||
)
|
)
|
||||||
|
|
||||||
# Send transcription to client
|
# Send transcription to client with detailed segments
|
||||||
with app.app_context():
|
with app.app_context():
|
||||||
socketio.emit('transcription', {
|
socketio.emit('transcription', {
|
||||||
'text': user_text,
|
'text': user_text,
|
||||||
'speaker': speaker_id
|
'speaker': speaker_id,
|
||||||
|
'segments': result['segments'] # Include the detailed segments with timestamps
|
||||||
}, room=session_id)
|
}, room=session_id)
|
||||||
|
|
||||||
# Generate AI response using Llama
|
# Generate AI response using Llama
|
||||||
|
|||||||
Reference in New Issue
Block a user