Demo Fixes 8
This commit is contained in:
@@ -60,8 +60,11 @@ class AppModels:
|
||||
generator = None
|
||||
tokenizer = None
|
||||
llm = None
|
||||
asr_model = None
|
||||
asr_processor = None
|
||||
whisperx_model = None
|
||||
whisperx_align_model = None
|
||||
whisperx_align_metadata = None
|
||||
diarize_model = None
|
||||
last_language = None
|
||||
|
||||
# Initialize the models object
|
||||
models = AppModels()
|
||||
@@ -87,25 +90,27 @@ def load_models():
|
||||
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
|
||||
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
|
||||
|
||||
# Whisper loading
|
||||
# WhisperX loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
|
||||
# Use regular Whisper instead of WhisperX to avoid compatibility issues
|
||||
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
||||
# Use WhisperX for better transcription with timestamps
|
||||
import whisperx
|
||||
|
||||
# Use a smaller model for faster processing
|
||||
model_id = "openai/whisper-small"
|
||||
# Use compute_type based on device
|
||||
compute_type = "float16" if DEVICE == "cuda" else "float32"
|
||||
|
||||
models.asr_processor = WhisperProcessor.from_pretrained(model_id)
|
||||
models.asr_model = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
|
||||
# Load the WhisperX model (smaller model for faster processing)
|
||||
models.whisperx_model = whisperx.load_model("small", DEVICE, compute_type=compute_type)
|
||||
|
||||
logger.info("Whisper ASR model loaded successfully")
|
||||
logger.info("WhisperX model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
|
||||
if DEVICE == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading ASR model: {str(e)}")
|
||||
import traceback
|
||||
error_details = traceback.format_exc()
|
||||
logger.error(f"Error loading WhisperX model: {str(e)}\n{error_details}")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
|
||||
|
||||
# Llama loading
|
||||
@@ -184,7 +189,7 @@ def system_status():
|
||||
"device": DEVICE,
|
||||
"models": {
|
||||
"generator": models.generator is not None,
|
||||
"asr": models.asr_model is not None, # Use the correct model name
|
||||
"asr": models.whisperx_model is not None, # Use the correct model name
|
||||
"llm": models.llm is not None
|
||||
}
|
||||
})
|
||||
@@ -327,8 +332,8 @@ def process_audio_queue(session_id, q):
|
||||
del user_queues[session_id]
|
||||
|
||||
def process_audio_and_respond(session_id, data):
|
||||
"""Process audio data and generate a response using standard Whisper"""
|
||||
if models.generator is None or models.asr_model is None or models.llm is None:
|
||||
"""Process audio data and generate a response using WhisperX"""
|
||||
if models.generator is None or models.whisperx_model is None or models.llm is None:
|
||||
logger.warning("Models not yet loaded!")
|
||||
with app.app_context():
|
||||
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
|
||||
@@ -364,44 +369,69 @@ def process_audio_and_respond(session_id, data):
|
||||
with app.app_context():
|
||||
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
|
||||
|
||||
# Load audio for ASR processing
|
||||
import librosa
|
||||
speech_array, sampling_rate = librosa.load(temp_path, sr=16000)
|
||||
# Load audio using WhisperX
|
||||
import whisperx
|
||||
audio = whisperx.load_audio(temp_path)
|
||||
|
||||
# Convert to required format
|
||||
processor_output = models.asr_processor(
|
||||
speech_array,
|
||||
sampling_rate=sampling_rate,
|
||||
return_tensors="pt",
|
||||
padding=True, # Add padding
|
||||
return_attention_mask=True # Request attention mask
|
||||
)
|
||||
input_features = processor_output.input_features.to(DEVICE)
|
||||
attention_mask = processor_output.get('attention_mask', None)
|
||||
# Check audio length and add a warning for short clips
|
||||
audio_length = len(audio) / 16000 # assuming 16kHz sample rate
|
||||
if audio_length < 1.0:
|
||||
logger.warning(f"Audio is very short ({audio_length:.2f}s), may affect transcription quality")
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.to(DEVICE)
|
||||
# Transcribe using WhisperX
|
||||
batch_size = 16 # adjust based on your GPU memory
|
||||
logger.info("Running WhisperX transcription...")
|
||||
|
||||
# Generate token ids with attention mask
|
||||
predicted_ids = models.asr_model.generate(
|
||||
input_features,
|
||||
attention_mask=attention_mask,
|
||||
language="en",
|
||||
task="transcribe"
|
||||
# Handle the warning about audio being shorter than 30s by suppressing it
|
||||
import warnings
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", message="audio is shorter than 30s")
|
||||
result = models.whisperx_model.transcribe(audio, batch_size=batch_size)
|
||||
|
||||
# Get the detected language
|
||||
language_code = result["language"]
|
||||
logger.info(f"Detected language: {language_code}")
|
||||
|
||||
# Check if alignment model needs to be loaded or updated
|
||||
if models.whisperx_align_model is None or language_code != models.last_language:
|
||||
# Clean up old models if they exist
|
||||
if models.whisperx_align_model is not None:
|
||||
del models.whisperx_align_model
|
||||
del models.whisperx_align_metadata
|
||||
if DEVICE == "cuda":
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Load new alignment model for the detected language
|
||||
logger.info(f"Loading alignment model for language: {language_code}")
|
||||
models.whisperx_align_model, models.whisperx_align_metadata = whisperx.load_align_model(
|
||||
language_code=language_code, device=DEVICE
|
||||
)
|
||||
else:
|
||||
# Fallback if attention mask is not available
|
||||
predicted_ids = models.asr_model.generate(
|
||||
input_features,
|
||||
language="en",
|
||||
task="transcribe"
|
||||
models.last_language = language_code
|
||||
|
||||
# Align the transcript to get word-level timestamps
|
||||
if result["segments"] and len(result["segments"]) > 0:
|
||||
logger.info("Aligning transcript...")
|
||||
result = whisperx.align(
|
||||
result["segments"],
|
||||
models.whisperx_align_model,
|
||||
models.whisperx_align_metadata,
|
||||
audio,
|
||||
DEVICE,
|
||||
return_char_alignments=False
|
||||
)
|
||||
|
||||
# Decode the predicted ids to text
|
||||
user_text = models.asr_processor.batch_decode(
|
||||
predicted_ids,
|
||||
skip_special_tokens=True
|
||||
)[0]
|
||||
# Process the segments for better output
|
||||
for segment in result["segments"]:
|
||||
# Round timestamps for better display
|
||||
segment["start"] = round(segment["start"], 2)
|
||||
segment["end"] = round(segment["end"], 2)
|
||||
# Add a confidence score if not present
|
||||
if "confidence" not in segment:
|
||||
segment["confidence"] = 1.0 # Default confidence
|
||||
|
||||
# Extract the full text from all segments
|
||||
user_text = ' '.join([segment['text'] for segment in result['segments']])
|
||||
|
||||
# If no text was recognized, don't process further
|
||||
if not user_text or len(user_text.strip()) == 0:
|
||||
@@ -433,11 +463,12 @@ def process_audio_and_respond(session_id, data):
|
||||
audio=waveform.squeeze()
|
||||
)
|
||||
|
||||
# Send transcription to client
|
||||
# Send transcription to client with detailed segments
|
||||
with app.app_context():
|
||||
socketio.emit('transcription', {
|
||||
'text': user_text,
|
||||
'speaker': speaker_id
|
||||
'speaker': speaker_id,
|
||||
'segments': result['segments'] # Include the detailed segments with timestamps
|
||||
}, room=session_id)
|
||||
|
||||
# Generate AI response using Llama
|
||||
|
||||
Reference in New Issue
Block a user