diff --git a/Backend/server.py b/Backend/server.py
index b9736b5..97b346b 100644
--- a/Backend/server.py
+++ b/Backend/server.py
@@ -9,7 +9,9 @@ import io
import whisperx
from io import BytesIO
from typing import List, Dict, Any, Optional
-from fastapi import FastAPI, WebSocket, WebSocketDisconnect
+from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
+from fastapi.responses import HTMLResponse, FileResponse
+from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from generator import load_csm_1b, Segment
@@ -17,6 +19,8 @@ import uvicorn
import time
import gc
from collections import deque
+import socket
+import requests
# Select device
if torch.cuda.is_available():
@@ -45,6 +49,32 @@ app.add_middleware(
allow_headers=["*"],
)
+# Define the base directory
+base_dir = os.path.dirname(os.path.abspath(__file__))
+
+# Mount a static files directory if you have any static assets like CSS or JS
+static_dir = os.path.join(base_dir, "static")
+os.makedirs(static_dir, exist_ok=True) # Create the directory if it doesn't exist
+app.mount("/static", StaticFiles(directory=static_dir), name="static")
+
+# Define route to serve index.html as the main page
+@app.get("/", response_class=HTMLResponse)
+async def get_index():
+ try:
+ with open(os.path.join(base_dir, "index.html"), "r") as f:
+ return HTMLResponse(content=f.read())
+ except FileNotFoundError:
+ return HTMLResponse(content="
Error: index.html not found
")
+
+# Add a favicon endpoint (optional, but good to have)
+@app.get("/favicon.ico")
+async def get_favicon():
+ favicon_path = os.path.join(static_dir, "favicon.ico")
+ if os.path.exists(favicon_path):
+ return FileResponse(favicon_path)
+ else:
+ return HTMLResponse(status_code=204) # No content
+
# Connection manager to handle multiple clients
class ConnectionManager:
def __init__(self):
@@ -259,6 +289,7 @@ async def websocket_endpoint(websocket: WebSocket):
energy_window.clear()
is_silence = False
last_active_time = time.time()
+ print(f"Streaming started with speaker ID: {speaker_id}")
await websocket.send_json({
"type": "streaming_status",
"status": "started"
@@ -269,6 +300,13 @@ async def websocket_endpoint(websocket: WebSocket):
energy_window.append(chunk_energy)
avg_energy = sum(energy_window) / len(energy_window)
+ # Debug audio levels
+ if len(energy_window) >= 5: # Only start printing after we have enough samples
+ if avg_energy > SILENCE_THRESHOLD:
+ print(f"[AUDIO] Active sound detected - Energy: {avg_energy:.6f} (threshold: {SILENCE_THRESHOLD})")
+ else:
+ print(f"[AUDIO] Silence detected - Energy: {avg_energy:.6f} (threshold: {SILENCE_THRESHOLD})")
+
# Check if audio is silent
current_silence = avg_energy < SILENCE_THRESHOLD
@@ -277,33 +315,53 @@ async def websocket_endpoint(websocket: WebSocket):
# Transition to silence
is_silence = True
last_active_time = time.time()
+ print("[STREAM] Transition to silence detected")
elif is_silence and not current_silence:
# User started talking again
is_silence = False
+ print("[STREAM] User resumed speaking")
# Add chunk to buffer regardless of silence state
streaming_buffer.append(audio_chunk)
+ # Debug buffer size periodically
+ if len(streaming_buffer) % 10 == 0:
+ print(f"[BUFFER] Current size: {len(streaming_buffer)} chunks, ~{len(streaming_buffer)/5:.1f} seconds")
+
# Check if silence has persisted long enough to consider "stopped talking"
silence_elapsed = time.time() - last_active_time
if is_silence and silence_elapsed >= SILENCE_DURATION_SEC and len(streaming_buffer) > 0:
# User has stopped talking - process the collected audio
+ print(f"[STREAM] Processing audio after {silence_elapsed:.2f}s of silence")
+ print(f"[STREAM] Processing {len(streaming_buffer)} audio chunks (~{len(streaming_buffer)/5:.1f} seconds)")
+
full_audio = torch.cat(streaming_buffer, dim=0)
+ # Log audio statistics
+ audio_duration = len(full_audio) / generator.sample_rate
+ audio_min = torch.min(full_audio).item()
+ audio_max = torch.max(full_audio).item()
+ audio_mean = torch.mean(full_audio).item()
+ print(f"[AUDIO] Processed audio - Duration: {audio_duration:.2f}s, Min: {audio_min:.4f}, Max: {audio_max:.4f}, Mean: {audio_mean:.4f}")
+
# Process with WhisperX speech-to-text
+ print("[ASR] Starting transcription with WhisperX...")
transcribed_text = await transcribe_audio(full_audio)
# Log the transcription
- print(f"Transcribed text: '{transcribed_text}'")
+ print(f"[ASR] Transcribed text: '{transcribed_text}'")
# Add to conversation context
if transcribed_text:
+ print(f"[DIALOG] Adding user utterance to context: '{transcribed_text}'")
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
context_segments.append(user_segment)
# Generate a contextual response
+ print("[DIALOG] Generating response...")
response_text = await generate_response(transcribed_text, context_segments)
+ print(f"[DIALOG] Response text: '{response_text}'")
# Send the transcribed text to client
await websocket.send_json({
@@ -312,12 +370,14 @@ async def websocket_endpoint(websocket: WebSocket):
})
# Generate audio for the response
+ print("[TTS] Generating speech for response...")
audio_tensor = generator.generate(
text=response_text,
speaker=1 if speaker_id == 0 else 0, # Use opposite speaker
context=context_segments,
max_audio_length_ms=10_000,
)
+ print(f"[TTS] Generated audio length: {len(audio_tensor)/generator.sample_rate:.2f}s")
# Add response to context
ai_segment = Segment(
@@ -326,15 +386,18 @@ async def websocket_endpoint(websocket: WebSocket):
audio=audio_tensor
)
context_segments.append(ai_segment)
+ print(f"[DIALOG] Context now has {len(context_segments)} segments")
# Convert audio to base64 and send back to client
audio_base64 = await encode_audio_data(audio_tensor)
+ print("[STREAM] Sending audio response to client")
await websocket.send_json({
"type": "audio_response",
"text": response_text,
"audio": audio_base64
})
else:
+ print("[ASR] Transcription failed or returned empty text")
# If transcription failed, send a generic response
await websocket.send_json({
"type": "error",
@@ -346,17 +409,20 @@ async def websocket_endpoint(websocket: WebSocket):
energy_window.clear()
is_silence = False
last_active_time = time.time()
+ print("[STREAM] Buffer cleared, ready for next utterance")
# If buffer gets too large without silence, process it anyway
# This prevents memory issues with very long streams
elif len(streaming_buffer) >= 30: # ~6 seconds of audio at 5 chunks/sec
- print("Buffer limit reached, processing audio")
+ print("[BUFFER] Maximum buffer size reached, processing audio")
full_audio = torch.cat(streaming_buffer, dim=0)
# Process with WhisperX speech-to-text
+ print("[ASR] Starting forced transcription of long audio...")
transcribed_text = await transcribe_audio(full_audio)
if transcribed_text:
+ print(f"[ASR] Transcribed long audio: '{transcribed_text}'")
context_segments.append(Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio))
# Send the transcribed text to client
@@ -364,11 +430,17 @@ async def websocket_endpoint(websocket: WebSocket):
"type": "transcription",
"text": transcribed_text + " (processing continued speech...)"
})
+ else:
+ print("[ASR] No transcription from long audio")
streaming_buffer = []
+ print("[BUFFER] Buffer cleared due to size limit")
except Exception as e:
- print(f"Error processing streaming audio: {str(e)}")
+ print(f"[ERROR] Processing streaming audio: {str(e)}")
+ # Print traceback for more detailed error information
+ import traceback
+ traceback.print_exc()
await websocket.send_json({
"type": "error",
"message": f"Error processing streaming audio: {str(e)}"
@@ -412,6 +484,53 @@ async def websocket_endpoint(websocket: WebSocket):
pass
manager.disconnect(websocket)
+# Add this function to get the public IP address
+def get_public_ip():
+ """Get the server's public IP address using an external service"""
+ try:
+ # Try multiple services in case one is down
+ services = [
+ "https://api.ipify.org",
+ "https://ifconfig.me/ip",
+ "https://checkip.amazonaws.com",
+ ]
+
+ for service in services:
+ try:
+ response = requests.get(service, timeout=3)
+ if response.status_code == 200:
+ return response.text.strip()
+ except:
+ continue
+
+ # Fallback to socket if external services fail
+ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
+ try:
+ # Doesn't need to be reachable, just used to determine interface
+ s.connect(('8.8.8.8', 1))
+ local_ip = s.getsockname()[0]
+ return local_ip
+ except:
+ return "localhost"
+ finally:
+ s.close()
+ except:
+ return "Could not determine IP address"
+# Update the __main__ block
if __name__ == "__main__":
+ public_ip = get_public_ip()
+ print(f"\n{'='*50}")
+ print(f"💬 Sesame AI Voice Chat Server")
+ print(f"{'='*50}")
+ print(f"📡 Server Information:")
+ print(f" - Public IP: http://{public_ip}:8000")
+ print(f" - Local URL: http://localhost:8000")
+ print(f" - WebSocket: ws://{public_ip}:8000/ws")
+ print(f"{'='*50}")
+ print(f"🌐 Connect from web browsers using: http://{public_ip}:8000")
+ print(f"🔧 Serving index.html from: {os.path.join(base_dir, 'index.html')}")
+ print(f"{'='*50}\n")
+
+ # Start the server
uvicorn.run(app, host="0.0.0.0", port=8000)
\ No newline at end of file