import os import base64 import json import torch import torchaudio import numpy as np import whisperx from io import BytesIO from typing import List, Dict, Any, Optional from flask import Flask, request, send_from_directory, Response from flask_cors import CORS from flask_socketio import SocketIO, emit, disconnect from generator import load_csm_1b, Segment import time import gc from collections import deque from threading import Lock # Add these lines right after your imports import torch import os # Handle CUDA issues os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Limit to first GPU only torch.backends.cudnn.benchmark = True # Set CUDA settings to avoid TF32 warnings torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True # Set compute type based on available hardware if torch.cuda.is_available(): device = "cuda" compute_type = "float16" # Faster for CUDA else: device = "cpu" compute_type = "int8" # Better for CPU print(f"Using device: {device} with compute type: {compute_type}") # Select device if torch.cuda.is_available(): device = "cuda" else: device = "cpu" print(f"Using device: {device}") # Initialize the model generator = load_csm_1b(device=device) # Initialize WhisperX for ASR print("Loading WhisperX model...") try: # Try to load a smaller model for faster response times asr_model = whisperx.load_model("small", device, compute_type=compute_type) print("WhisperX 'small' model loaded successfully") except Exception as e: print(f"Error loading 'small' model: {str(e)}") try: # Fall back to tiny model if small fails asr_model = whisperx.load_model("tiny", device, compute_type=compute_type) print("WhisperX 'tiny' model loaded as fallback") except Exception as e2: print(f"Error loading fallback model: {str(e2)}") print("Trying CPU model as last resort") # Last resort - try CPU asr_model = whisperx.load_model("tiny", "cpu", compute_type="int8") print("WhisperX loaded on CPU as last resort") # Silence detection parameters SILENCE_THRESHOLD = 0.01 # Adjust based on your audio normalization SILENCE_DURATION_SEC = 1.0 # How long silence must persist # Define the base directory base_dir = os.path.dirname(os.path.abspath(__file__)) static_dir = os.path.join(base_dir, "static") os.makedirs(static_dir, exist_ok=True) # Setup Flask app = Flask(__name__) CORS(app) socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet') # Socket connection management thread = None thread_lock = Lock() active_clients = {} # Map client_id to client context # Helper function to convert audio data def decode_audio_data(audio_data: str) -> torch.Tensor: """Decode base64 audio data to a torch tensor with improved error handling""" try: # Skip empty audio data if not audio_data or len(audio_data) < 100: print("Empty or too short audio data received") return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence # Extract the actual base64 content if ',' in audio_data: # Handle data URL format (data:audio/wav;base64,...) audio_data = audio_data.split(',')[1] # Decode base64 audio data try: binary_data = base64.b64decode(audio_data) print(f"Decoded base64 data: {len(binary_data)} bytes") # Check if we have enough data for a valid WAV if len(binary_data) < 44: # WAV header is 44 bytes print("Data too small to be a valid WAV file") return torch.zeros(generator.sample_rate // 2) except Exception as e: print(f"Base64 decoding error: {str(e)}") return torch.zeros(generator.sample_rate // 2) # Save for debugging debug_path = os.path.join(base_dir, "debug_incoming.wav") with open(debug_path, 'wb') as f: f.write(binary_data) print(f"Saved debug file: {debug_path}") # Approach 1: Load directly with torchaudio try: with BytesIO(binary_data) as temp_file: temp_file.seek(0) # Ensure we're at the start of the buffer audio_tensor, sample_rate = torchaudio.load(temp_file, format="wav") print(f"Direct loading success: shape={audio_tensor.shape}, rate={sample_rate}Hz") # Check if audio is valid if audio_tensor.numel() == 0 or torch.isnan(audio_tensor).any(): raise ValueError("Empty or invalid audio tensor detected") except Exception as e: print(f"Direct loading failed: {str(e)}") # Approach 2: Try to fix/normalize the WAV data try: # Sometimes WAV headers can be malformed, attempt to fix temp_path = os.path.join(base_dir, "temp_fixing.wav") with open(temp_path, 'wb') as f: f.write(binary_data) # Use a simpler numpy approach as backup import numpy as np import wave try: with wave.open(temp_path, 'rb') as wf: n_channels = wf.getnchannels() sample_width = wf.getsampwidth() sample_rate = wf.getframerate() n_frames = wf.getnframes() # Read the frames frames = wf.readframes(n_frames) print(f"Wave reading: channels={n_channels}, rate={sample_rate}Hz, frames={n_frames}") # Convert to numpy and then to torch if sample_width == 2: # 16-bit audio data = np.frombuffer(frames, dtype=np.int16).astype(np.float32) / 32768.0 elif sample_width == 1: # 8-bit audio data = np.frombuffer(frames, dtype=np.uint8).astype(np.float32) / 128.0 - 1.0 else: raise ValueError(f"Unsupported sample width: {sample_width}") # Convert to mono if needed if n_channels > 1: data = data.reshape(-1, n_channels) data = data.mean(axis=1) # Convert to torch tensor audio_tensor = torch.from_numpy(data) print(f"Successfully converted with numpy: shape={audio_tensor.shape}") except Exception as wave_error: print(f"Wave processing failed: {str(wave_error)}") # Try with torchaudio as last resort audio_tensor, sample_rate = torchaudio.load(temp_path, format="wav") # Clean up if os.path.exists(temp_path): os.remove(temp_path) except Exception as e2: print(f"All WAV loading methods failed: {str(e2)}") print("Returning silence as fallback") return torch.zeros(generator.sample_rate // 2) # Ensure audio is the right shape (mono) if len(audio_tensor.shape) > 1 and audio_tensor.shape[0] > 1: audio_tensor = torch.mean(audio_tensor, dim=0) # Ensure we have a 1D tensor audio_tensor = audio_tensor.squeeze() # Resample if needed if sample_rate != generator.sample_rate: try: print(f"Resampling from {sample_rate}Hz to {generator.sample_rate}Hz") resampler = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=generator.sample_rate ) audio_tensor = resampler(audio_tensor) except Exception as e: print(f"Resampling error: {str(e)}") # If resampling fails, just return the original audio # The model can often handle different sample rates # Normalize audio to avoid issues if torch.abs(audio_tensor).max() > 0: audio_tensor = audio_tensor / torch.abs(audio_tensor).max() print(f"Final audio tensor: shape={audio_tensor.shape}, min={audio_tensor.min().item():.4f}, max={audio_tensor.max().item():.4f}") return audio_tensor except Exception as e: print(f"Unhandled error in decode_audio_data: {str(e)}") # Return a small silent audio segment as fallback return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence def encode_audio_data(audio_tensor: torch.Tensor) -> str: """Encode torch tensor audio to base64 string""" buf = BytesIO() torchaudio.save(buf, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav") buf.seek(0) audio_base64 = base64.b64encode(buf.read()).decode('utf-8') return f"data:audio/wav;base64,{audio_base64}" def transcribe_audio(audio_tensor: torch.Tensor) -> str: """Transcribe audio using WhisperX""" try: # Save the tensor to a temporary file temp_path = os.path.join(base_dir, "temp_audio.wav") torchaudio.save(temp_path, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate) print(f"Transcribing audio file: {temp_path} (size: {os.path.getsize(temp_path)} bytes)") # Load and transcribe the audio audio = whisperx.load_audio(temp_path) result = asr_model.transcribe(audio, batch_size=16) # Clean up if os.path.exists(temp_path): os.remove(temp_path) # Get the transcription text if result["segments"] and len(result["segments"]) > 0: # Combine all segments transcription = " ".join([segment["text"] for segment in result["segments"]]) print(f"Transcription successful: '{transcription.strip()}'") return transcription.strip() else: print("Transcription returned no segments") return "" except Exception as e: print(f"Error in transcription: {str(e)}") import traceback traceback.print_exc() if os.path.exists("temp_audio.wav"): os.remove("temp_audio.wav") return "" def generate_response(text: str, conversation_history: List[Segment]) -> str: """Generate a contextual response based on the transcribed text""" # Simple response logic - can be replaced with a more sophisticated LLM in the future responses = { "hello": "Hello there! How are you doing today?", "how are you": "I'm doing well, thanks for asking! How about you?", "what is your name": "I'm Sesame, your voice assistant. How can I help you?", "bye": "Goodbye! It was nice chatting with you.", "thank you": "You're welcome! Is there anything else I can help with?", "weather": "I don't have real-time weather data, but I hope it's nice where you are!", "help": "I can chat with you using natural voice. Just speak normally and I'll respond.", } text_lower = text.lower() # Check for matching keywords for key, response in responses.items(): if key in text_lower: return response # Default responses based on text length if not text: return "I didn't catch that. Could you please repeat?" elif len(text) < 10: return "Thanks for your message. Could you elaborate a bit more?" else: return f"I understand you said '{text}'. That's interesting! Can you tell me more about that?" # Flask routes for serving static content @app.route('/') def index(): return send_from_directory(base_dir, 'index.html') @app.route('/favicon.ico') def favicon(): if os.path.exists(os.path.join(static_dir, 'favicon.ico')): return send_from_directory(static_dir, 'favicon.ico') return Response(status=204) @app.route('/voice-chat.js') def voice_chat_js(): return send_from_directory(base_dir, 'voice-chat.js') @app.route('/static/') def serve_static(path): return send_from_directory(static_dir, path) # Socket.IO event handlers @socketio.on('connect') def handle_connect(): client_id = request.sid print(f"Client connected: {client_id}") # Initialize client context active_clients[client_id] = { 'context_segments': [], 'streaming_buffer': [], 'is_streaming': False, 'is_silence': False, 'last_active_time': time.time(), 'energy_window': deque(maxlen=10) } emit('status', {'type': 'connected', 'message': 'Connected to server'}) @socketio.on('disconnect') def handle_disconnect(): client_id = request.sid if client_id in active_clients: del active_clients[client_id] print(f"Client disconnected: {client_id}") @socketio.on('generate') def handle_generate(data): client_id = request.sid if client_id not in active_clients: emit('error', {'message': 'Client not registered'}) return try: text = data.get('text', '') speaker_id = data.get('speaker', 0) print(f"Generating audio for: '{text}' with speaker {speaker_id}") # Generate audio response audio_tensor = generator.generate( text=text, speaker=speaker_id, context=active_clients[client_id]['context_segments'], max_audio_length_ms=10_000, ) # Add to conversation context active_clients[client_id]['context_segments'].append( Segment(text=text, speaker=speaker_id, audio=audio_tensor) ) # Convert audio to base64 and send back to client audio_base64 = encode_audio_data(audio_tensor) emit('audio_response', { 'type': 'audio_response', 'audio': audio_base64 }) except Exception as e: print(f"Error generating audio: {str(e)}") emit('error', { 'type': 'error', 'message': f"Error generating audio: {str(e)}" }) @socketio.on('add_to_context') def handle_add_to_context(data): client_id = request.sid if client_id not in active_clients: emit('error', {'message': 'Client not registered'}) return try: text = data.get('text', '') speaker_id = data.get('speaker', 0) audio_data = data.get('audio', '') # Convert received audio to tensor audio_tensor = decode_audio_data(audio_data) # Add to conversation context active_clients[client_id]['context_segments'].append( Segment(text=text, speaker=speaker_id, audio=audio_tensor) ) emit('context_updated', { 'type': 'context_updated', 'message': 'Audio added to context' }) except Exception as e: print(f"Error adding to context: {str(e)}") emit('error', { 'type': 'error', 'message': f"Error processing audio: {str(e)}" }) @socketio.on('clear_context') def handle_clear_context(): client_id = request.sid if client_id in active_clients: active_clients[client_id]['context_segments'] = [] emit('context_updated', { 'type': 'context_updated', 'message': 'Context cleared' }) @socketio.on('stream_audio') def handle_stream_audio(data): client_id = request.sid if client_id not in active_clients: emit('error', {'message': 'Client not registered'}) return client = active_clients[client_id] try: speaker_id = data.get('speaker', 0) audio_data = data.get('audio', '') # Convert received audio to tensor audio_chunk = decode_audio_data(audio_data) # Start streaming mode if not already started if not client['is_streaming']: client['is_streaming'] = True client['streaming_buffer'] = [] client['energy_window'].clear() client['is_silence'] = False client['last_active_time'] = time.time() print(f"[{client_id}] Streaming started with speaker ID: {speaker_id}") emit('streaming_status', { 'type': 'streaming_status', 'status': 'started' }) # Calculate audio energy for silence detection chunk_energy = torch.mean(torch.abs(audio_chunk)).item() client['energy_window'].append(chunk_energy) avg_energy = sum(client['energy_window']) / len(client['energy_window']) # Check if audio is silent current_silence = avg_energy < SILENCE_THRESHOLD # Track silence transition if not client['is_silence'] and current_silence: # Transition to silence client['is_silence'] = True client['last_active_time'] = time.time() elif client['is_silence'] and not current_silence: # User started talking again client['is_silence'] = False # Add chunk to buffer regardless of silence state client['streaming_buffer'].append(audio_chunk) # Check if silence has persisted long enough to consider "stopped talking" silence_elapsed = time.time() - client['last_active_time'] if client['is_silence'] and silence_elapsed >= SILENCE_DURATION_SEC and len(client['streaming_buffer']) > 0: # User has stopped talking - process the collected audio print(f"[{client_id}] Processing audio after {silence_elapsed:.2f}s of silence") full_audio = torch.cat(client['streaming_buffer'], dim=0) # Process with WhisperX speech-to-text print(f"[{client_id}] Starting transcription with WhisperX...") transcribed_text = transcribe_audio(full_audio) # Log the transcription print(f"[{client_id}] Transcribed text: '{transcribed_text}'") # Handle the transcription result if transcribed_text: # Add user message to context user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio) client['context_segments'].append(user_segment) # Send the transcribed text to client emit('transcription', { 'type': 'transcription', 'text': transcribed_text }) # Generate a contextual response response_text = generate_response(transcribed_text, client['context_segments']) print(f"[{client_id}] Generating audio response: '{response_text}'") # Let the client know we're processing emit('processing_status', { 'type': 'processing_status', 'status': 'generating_audio', 'message': 'Generating audio response...' }) # Generate audio for the response try: # Use a different speaker than the user ai_speaker_id = 1 if speaker_id == 0 else 0 # Start audio generation with streaming (chunk by chunk) audio_chunks = [] # This version tries to stream the audio generation in smaller chunks # Note: CSM model doesn't natively support incremental generation, # so we're simulating it here for a more responsive UI experience # Generate the full response audio_tensor = generator.generate( text=response_text, speaker=ai_speaker_id, context=client['context_segments'], max_audio_length_ms=10_000, ) # Add response to context ai_segment = Segment( text=response_text, speaker=ai_speaker_id, audio=audio_tensor ) client['context_segments'].append(ai_segment) # Convert audio to base64 and send back to client audio_base64 = encode_audio_data(audio_tensor) emit('audio_response', { 'type': 'audio_response', 'text': response_text, 'audio': audio_base64 }) print(f"[{client_id}] Audio response sent: {len(audio_base64)} bytes") except Exception as gen_error: print(f"Error generating audio response: {str(gen_error)}") emit('error', { 'type': 'error', 'message': "Sorry, there was an error generating the audio response." }) else: # If transcription failed, send a generic response emit('error', { 'type': 'error', 'message': "Sorry, I couldn't understand what you said. Could you try again?" }) # Clear buffer and reset silence detection client['streaming_buffer'] = [] client['energy_window'].clear() client['is_silence'] = False client['last_active_time'] = time.time() # If buffer gets too large without silence, process it anyway elif len(client['streaming_buffer']) >= 30: # ~6 seconds of audio at 5 chunks/sec print(f"[{client_id}] Processing long audio segment without silence") full_audio = torch.cat(client['streaming_buffer'], dim=0) # Process with WhisperX speech-to-text transcribed_text = transcribe_audio(full_audio) if transcribed_text: client['context_segments'].append( Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio) ) # Send the transcribed text to client emit('transcription', { 'type': 'transcription', 'text': transcribed_text + " (processing continued speech...)" }) # Keep half of the buffer for context (sliding window approach) half_point = len(client['streaming_buffer']) // 2 client['streaming_buffer'] = client['streaming_buffer'][half_point:] except Exception as e: import traceback traceback.print_exc() print(f"Error processing streaming audio: {str(e)}") emit('error', { 'type': 'error', 'message': f"Error processing streaming audio: {str(e)}" }) @socketio.on('stop_streaming') def handle_stop_streaming(data): client_id = request.sid if client_id not in active_clients: return client = active_clients[client_id] client['is_streaming'] = False if client['streaming_buffer'] and len(client['streaming_buffer']) > 5: # Process any remaining audio in the buffer full_audio = torch.cat(client['streaming_buffer'], dim=0) # Process with WhisperX speech-to-text transcribed_text = transcribe_audio(full_audio) if transcribed_text: client['context_segments'].append( Segment(text=transcribed_text, speaker=data.get("speaker", 0), audio=full_audio) ) # Send the transcribed text to client emit('transcription', { 'type': 'transcription', 'text': transcribed_text }) client['streaming_buffer'] = [] emit('streaming_status', { 'type': 'streaming_status', 'status': 'stopped' }) def stream_audio_to_client(client_id, audio_tensor, text, speaker_id, chunk_size_ms=500): """Stream audio to client in chunks to simulate real-time generation""" try: if client_id not in active_clients: print(f"Client {client_id} not found for streaming") return # Calculate chunk size in samples chunk_size = int(generator.sample_rate * chunk_size_ms / 1000) total_chunks = math.ceil(audio_tensor.size(0) / chunk_size) print(f"Streaming audio in {total_chunks} chunks of {chunk_size_ms}ms each") # Send initial response with text but no audio yet socketio.emit('audio_response_start', { 'type': 'audio_response_start', 'text': text, 'total_chunks': total_chunks }, room=client_id) # Stream each chunk for i in range(total_chunks): start_idx = i * chunk_size end_idx = min(start_idx + chunk_size, audio_tensor.size(0)) # Extract chunk chunk = audio_tensor[start_idx:end_idx] # Encode chunk chunk_base64 = encode_audio_data(chunk) # Send chunk socketio.emit('audio_response_chunk', { 'type': 'audio_response_chunk', 'chunk_index': i, 'total_chunks': total_chunks, 'audio': chunk_base64, 'is_last': i == total_chunks - 1 }, room=client_id) # Brief pause between chunks to simulate streaming time.sleep(0.1) # Send completion message socketio.emit('audio_response_complete', { 'type': 'audio_response_complete', 'text': text }, room=client_id) print(f"Audio streaming complete: {total_chunks} chunks sent") except Exception as e: print(f"Error streaming audio to client: {str(e)}") import traceback traceback.print_exc() if __name__ == "__main__": print(f"\n{'='*60}") print(f"🔊 Sesame AI Voice Chat Server (Flask Implementation)") print(f"{'='*60}") print(f"📡 Server Information:") print(f" - Local URL: http://localhost:5000") print(f" - Network URL: http://:5000") print(f" - WebSocket: ws://:5000/socket.io") print(f"{'='*60}") print(f"💡 To make this server public:") print(f" 1. Ensure port 5000 is open in your firewall") print(f" 2. Set up port forwarding on your router to port 5000") print(f" 3. Or use a service like ngrok with: ngrok http 5000") print(f"{'='*60}") print(f"🌐 Device: {device.upper()}") print(f"🧠 Models loaded: Sesame CSM + WhisperX ({asr_model.device})") print(f"🔧 Serving from: {os.path.join(base_dir, 'index.html')}") print(f"{'='*60}") print(f"Ready to receive connections! Press Ctrl+C to stop the server.\n") socketio.run(app, host="0.0.0.0", port=5000, debug=False)