Files
HooHacks-12/Backend/server.py
2025-03-30 08:59:26 -04:00

543 lines
20 KiB
Python

import os
import io
import base64
import time
import torch
import torchaudio
import numpy as np
from flask import Flask, render_template, request
from flask_socketio import SocketIO, emit
from transformers import AutoModelForCausalLM, AutoTokenizer
from collections import deque
import requests
import huggingface_hub
from generator import load_csm_1b, Segment
import threading
import queue
import asyncio
import json
# Configure environment with longer timeouts
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "600" # 10 minutes timeout for downloads
requests.adapters.DEFAULT_TIMEOUT = 60 # Increase default requests timeout
# Create a models directory for caching
os.makedirs("models", exist_ok=True)
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key'
socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet')
# Explicitly check for CUDA and print more detailed info
print("\n=== CUDA Information ===")
if torch.cuda.is_available():
print(f"CUDA is available")
print(f"CUDA version: {torch.version.cuda}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
print("CUDA is not available")
# Check for cuDNN
try:
import ctypes
ctypes.CDLL("libcudnn_ops_infer.so.8")
print("cuDNN is available")
except:
print("cuDNN is not available (libcudnn_ops_infer.so.8 not found)")
# Check for other compute platforms
if torch.backends.mps.is_available():
print("MPS (Apple Silicon) is available")
else:
print("MPS is not available")
print("========================\n")
# Check for CUDA availability and handle potential CUDA/cuDNN issues
try:
if torch.cuda.is_available():
# Try to initialize CUDA to check if libraries are properly loaded
_ = torch.zeros(1).cuda()
device = "cuda"
whisper_compute_type = "float16"
print("🟢 CUDA is available and initialized successfully")
elif torch.backends.mps.is_available():
device = "mps"
whisper_compute_type = "float32"
print("🟢 MPS is available (Apple Silicon)")
else:
device = "cpu"
whisper_compute_type = "int8"
print("🟡 Using CPU (CUDA/MPS not available)")
except Exception as e:
print(f"🔴 Error initializing CUDA: {e}")
print("🔴 Falling back to CPU")
device = "cpu"
whisper_compute_type = "int8"
print(f"Using device: {device}")
# Initialize models with proper error handling
whisper_model = None
csm_generator = None
llm_model = None
llm_tokenizer = None
def load_models():
global whisper_model, csm_generator, llm_model, llm_tokenizer
# Initialize Faster-Whisper for transcription
try:
print("Loading Whisper model...")
# Import here to avoid immediate import errors if package is missing
from faster_whisper import WhisperModel
whisper_model = WhisperModel("base", device=device, compute_type=whisper_compute_type, download_root="./models/whisper")
print("Whisper model loaded successfully")
except Exception as e:
print(f"Error loading Whisper model: {e}")
print("Will use backup speech recognition method if available")
# Initialize CSM model for audio generation
try:
print("Loading CSM model...")
csm_generator = load_csm_1b(device=device)
print("CSM model loaded successfully")
except Exception as e:
print(f"Error loading CSM model: {e}")
print("Audio generation will not be available")
# Initialize Llama 3.2 model for response generation
try:
print("Loading Llama 3.2 model...")
llm_model_id = "meta-llama/Llama-3.2-1B" # Choose appropriate size based on resources
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_id, cache_dir="./models/llama")
# Use the right data type based on device
dtype = torch.bfloat16 if device != "cpu" else torch.float32
llm_model = AutoModelForCausalLM.from_pretrained(
llm_model_id,
torch_dtype=dtype,
device_map=device,
cache_dir="./models/llama",
low_cpu_mem_usage=True
)
print("Llama 3.2 model loaded successfully")
except Exception as e:
print(f"Error loading Llama 3.2 model: {e}")
print("Will use a fallback response generation method")
# Store conversation context
conversation_context = {} # session_id -> context
active_audio_streams = {} # session_id -> stream status
@app.route('/')
def index():
return render_template('index.html')
@socketio.on('connect')
def handle_connect():
print(f"Client connected: {request.sid}")
conversation_context[request.sid] = {
'segments': [],
'speakers': [0, 1], # 0 = user, 1 = bot
'audio_buffer': deque(maxlen=10), # Store recent audio chunks
'is_speaking': False,
'last_activity': time.time(),
'active_session': True,
'transcription_buffer': [] # For real-time transcription
}
emit('ready', {
'message': 'Connection established',
'sample_rate': getattr(csm_generator, 'sample_rate', 24000) if csm_generator else 24000
})
@socketio.on('disconnect')
def handle_disconnect():
print(f"Client disconnected: {request.sid}")
session_id = request.sid
# Clean up resources
if session_id in conversation_context:
conversation_context[session_id]['active_session'] = False
del conversation_context[session_id]
if session_id in active_audio_streams:
active_audio_streams[session_id]['active'] = False
del active_audio_streams[session_id]
@socketio.on('audio_stream')
def handle_audio_stream(data):
"""Handle incoming audio stream from client"""
session_id = request.sid
if session_id not in conversation_context:
return
context = conversation_context[session_id]
context['last_activity'] = time.time()
# Process different stream events
if data.get('event') == 'start':
# Client is starting to send audio
context['is_speaking'] = True
context['audio_buffer'].clear()
context['transcription_buffer'] = []
print(f"User {session_id} started streaming audio")
# If AI was speaking, interrupt it
if session_id in active_audio_streams and active_audio_streams[session_id]['active']:
active_audio_streams[session_id]['active'] = False
emit('ai_stream_interrupt', {}, room=session_id)
elif data.get('event') == 'data':
# Audio data received
if not context['is_speaking']:
return
# Decode audio chunk
try:
audio_data = base64.b64decode(data.get('audio', ''))
if not audio_data:
return
audio_numpy = np.frombuffer(audio_data, dtype=np.float32)
# Apply a simple noise gate
if np.mean(np.abs(audio_numpy)) < 0.01: # Very quiet
return
audio_tensor = torch.tensor(audio_numpy)
# Add to audio buffer
context['audio_buffer'].append(audio_tensor)
# Real-time transcription (periodic)
if len(context['audio_buffer']) % 3 == 0: # Process every 3 chunks
threading.Thread(
target=process_realtime_transcription,
args=(session_id,),
daemon=True
).start()
except Exception as e:
print(f"Error processing audio chunk: {e}")
elif data.get('event') == 'end':
# Client has finished sending audio
context['is_speaking'] = False
if len(context['audio_buffer']) > 0:
# Process the complete utterance
threading.Thread(
target=process_complete_utterance,
args=(session_id,),
daemon=True
).start()
print(f"User {session_id} stopped streaming audio")
def process_realtime_transcription(session_id):
"""Process incoming audio for real-time transcription"""
if session_id not in conversation_context or not conversation_context[session_id]['active_session']:
return
context = conversation_context[session_id]
if not context['audio_buffer'] or not context['is_speaking']:
return
try:
# Combine current buffer for transcription
buffer_copy = list(context['audio_buffer'])
if not buffer_copy:
return
full_audio = torch.cat(buffer_copy, dim=0)
# Save audio to temporary WAV file for transcription
temp_audio_path = f"temp_rt_{session_id}.wav"
torchaudio.save(
temp_audio_path,
full_audio.unsqueeze(0),
44100 # Assuming 44.1kHz from client
)
# Transcribe with Whisper if available
if whisper_model is not None:
segments, _ = whisper_model.transcribe(temp_audio_path, beam_size=5)
text = " ".join([segment.text for segment in segments])
if text.strip():
context['transcription_buffer'].append(text)
# Send partial transcription to client
emit('partial_transcription', {'text': text}, room=session_id)
except Exception as e:
print(f"Error in realtime transcription: {e}")
finally:
# Clean up
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
def process_complete_utterance(session_id):
"""Process completed user utterance, generate response and stream audio back"""
if session_id not in conversation_context or not conversation_context[session_id]['active_session']:
return
context = conversation_context[session_id]
if not context['audio_buffer']:
return
# Combine audio chunks
full_audio = torch.cat(list(context['audio_buffer']), dim=0)
context['audio_buffer'].clear()
# Save audio to temporary WAV file for transcription
temp_audio_path = f"temp_audio_{session_id}.wav"
torchaudio.save(
temp_audio_path,
full_audio.unsqueeze(0),
44100 # Assuming 44.1kHz from client
)
try:
# Try using Whisper first if available
if whisper_model is not None:
user_text = transcribe_with_whisper(temp_audio_path)
else:
# Fallback to Google's speech recognition
user_text = transcribe_with_google(temp_audio_path)
if not user_text:
print("No speech detected.")
emit('error', {'message': 'No speech detected. Please try again.'}, room=session_id)
return
print(f"Transcribed: {user_text}")
# Add to conversation segments
user_segment = Segment(
text=user_text,
speaker=0, # User is speaker 0
audio=full_audio
)
context['segments'].append(user_segment)
# Generate bot response text
bot_response = generate_llm_response(user_text, context['segments'])
print(f"Bot response: {bot_response}")
# Send transcribed text to client
emit('transcription', {'text': user_text}, room=session_id)
# Generate and stream audio response if CSM is available
if csm_generator is not None:
# Create stream state object
active_audio_streams[session_id] = {
'active': True,
'text': bot_response
}
# Send initial response to prepare client
emit('ai_stream_start', {
'text': bot_response
}, room=session_id)
# Start audio generation in a separate thread
threading.Thread(
target=generate_and_stream_audio_realtime,
args=(bot_response, context['segments'], session_id),
daemon=True
).start()
else:
# Send text-only response if audio generation isn't available
emit('text_response', {'text': bot_response}, room=session_id)
# Add text-only bot response to conversation history
bot_segment = Segment(
text=bot_response,
speaker=1, # Bot is speaker 1
audio=torch.zeros(1) # Placeholder empty audio
)
context['segments'].append(bot_segment)
except Exception as e:
print(f"Error processing speech: {e}")
emit('error', {'message': f'Error processing speech: {str(e)}'}, room=session_id)
finally:
# Cleanup temp file
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
def transcribe_with_whisper(audio_path):
"""Transcribe audio using Faster-Whisper"""
segments, info = whisper_model.transcribe(audio_path, beam_size=5)
# Collect all text from segments
user_text = ""
for segment in segments:
segment_text = segment.text.strip()
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment_text}")
user_text += segment_text + " "
print(f"Transcribed text: {user_text.strip()}")
return user_text.strip()
def transcribe_with_google(audio_path):
"""Fallback transcription using Google's speech recognition"""
import speech_recognition as sr
recognizer = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio = recognizer.record(source)
try:
text = recognizer.recognize_google(audio)
return text
except sr.UnknownValueError:
return ""
except sr.RequestError:
# If Google API fails, try a basic energy-based VAD approach
# This is a very basic fallback and won't give good results
return "[Speech detected but transcription failed]"
def generate_llm_response(user_text, conversation_segments):
"""Generate text response using available model"""
if llm_model is not None and llm_tokenizer is not None:
# Format conversation history for the LLM
conversation_history = ""
for segment in conversation_segments[-5:]: # Use last 5 utterances for context
speaker_name = "User" if segment.speaker == 0 else "Assistant"
conversation_history += f"{speaker_name}: {segment.text}\n"
# Add the current user query
conversation_history += f"User: {user_text}\nAssistant:"
try:
# Generate response
inputs = llm_tokenizer(conversation_history, return_tensors="pt").to(device)
output = llm_model.generate(
inputs.input_ids,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = llm_tokenizer.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response.strip()
except Exception as e:
print(f"Error generating response with LLM: {e}")
return fallback_response(user_text)
else:
return fallback_response(user_text)
def fallback_response(user_text):
"""Generate a simple fallback response when LLM is not available"""
# Simple rule-based responses
user_text_lower = user_text.lower()
if "hello" in user_text_lower or "hi" in user_text_lower:
return "Hello! I'm a simple fallback assistant. The main language model couldn't be loaded, so I have limited capabilities."
elif "how are you" in user_text_lower:
return "I'm functioning within my limited capabilities. How can I assist you today?"
elif "thank" in user_text_lower:
return "You're welcome! Let me know if there's anything else I can help with."
elif "bye" in user_text_lower or "goodbye" in user_text_lower:
return "Goodbye! Have a great day!"
elif any(q in user_text_lower for q in ["what", "who", "where", "when", "why", "how"]):
return "I'm running in fallback mode and can't answer complex questions. Please try again when the main language model is available."
else:
return "I understand you said something about that. Unfortunately, I'm running in fallback mode with limited capabilities. Please try again later when the main model is available."
def generate_and_stream_audio_realtime(text, conversation_segments, session_id):
"""Generate audio response using CSM and stream it in real-time to client"""
if session_id not in active_audio_streams or not active_audio_streams[session_id]['active']:
return
try:
# Use the last few conversation segments as context
context_segments = conversation_segments[-4:] if len(conversation_segments) > 4 else conversation_segments
# Generate audio for bot response
audio = csm_generator.generate(
text=text,
speaker=1, # Bot is speaker 1
context=context_segments,
max_audio_length_ms=10000, # 10 seconds max
temperature=0.9,
topk=50
)
# Store the full audio for conversation history
bot_segment = Segment(
text=text,
speaker=1, # Bot is speaker 1
audio=audio
)
if session_id in conversation_context and conversation_context[session_id]['active_session']:
conversation_context[session_id]['segments'].append(bot_segment)
# Stream audio in small chunks for more responsive playback
chunk_size = 4800 # 200ms at 24kHz
for i in range(0, len(audio), chunk_size):
if session_id not in active_audio_streams or not active_audio_streams[session_id]['active']:
print("Audio streaming interrupted or session ended")
break
chunk = audio[i:i+chunk_size]
# Convert audio chunk to base64 for streaming
audio_bytes = io.BytesIO()
torchaudio.save(audio_bytes, chunk.unsqueeze(0).cpu(), csm_generator.sample_rate, format="wav")
audio_bytes.seek(0)
audio_b64 = base64.b64encode(audio_bytes.read()).decode('utf-8')
# Send chunk to client
socketio.emit('ai_stream_data', {
'audio': audio_b64,
'is_last': i + chunk_size >= len(audio)
}, room=session_id)
# Simulate real-time speech by adding a small delay
# Remove this in production for faster response
time.sleep(0.15) # Slight delay for more natural timing
# Signal end of stream
if session_id in active_audio_streams and active_audio_streams[session_id]['active']:
socketio.emit('ai_stream_end', {}, room=session_id)
active_audio_streams[session_id]['active'] = False
except Exception as e:
print(f"Error generating or streaming audio: {e}")
# Send error message to client
if session_id in conversation_context and conversation_context[session_id]['active_session']:
socketio.emit('error', {
'message': f'Error generating audio: {str(e)}'
}, room=session_id)
# Signal stream end to unblock client
socketio.emit('ai_stream_end', {}, room=session_id)
if session_id in active_audio_streams:
active_audio_streams[session_id]['active'] = False
if __name__ == '__main__':
# Ensure the existing index.html file is in the correct location
if not os.path.exists('templates'):
os.makedirs('templates')
if os.path.exists('index.html') and not os.path.exists('templates/index.html'):
os.rename('index.html', 'templates/index.html')
# Load models before starting the server
print("Starting model loading...")
load_models()
# Start the server with eventlet for better WebSocket performance
print("Starting Flask SocketIO server...")
socketio.run(app, host='0.0.0.0', port=5000, debug=False)