Files
HooHacks-12/Backend/server.py
2025-03-29 22:06:00 -04:00

417 lines
17 KiB
Python

import os
import base64
import json
import asyncio
import torch
import torchaudio
import numpy as np
import io
import whisperx
from io import BytesIO
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from generator import load_csm_1b, Segment
import uvicorn
import time
import gc
from collections import deque
# Select device
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print(f"Using device: {device}")
# Initialize the model
generator = load_csm_1b(device=device)
# Initialize WhisperX for ASR
print("Loading WhisperX model...")
# Use a smaller model for faster response times
asr_model = whisperx.load_model("medium", device, compute_type="float16")
print("WhisperX model loaded!")
app = FastAPI()
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allow all origins in development
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Connection manager to handle multiple clients
class ConnectionManager:
def __init__(self):
self.active_connections: List[WebSocket] = []
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)
def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)
manager = ConnectionManager()
# Silence detection parameters
SILENCE_THRESHOLD = 0.01 # Adjust based on your audio normalization
SILENCE_DURATION_SEC = 1.0 # How long silence must persist to be considered "stopped talking"
# Helper function to convert audio data
async def decode_audio_data(audio_data: str) -> torch.Tensor:
"""Decode base64 audio data to a torch tensor"""
try:
# Decode base64 audio data
binary_data = base64.b64decode(audio_data.split(',')[1] if ',' in audio_data else audio_data)
# Save to a temporary WAV file first
temp_file = BytesIO(binary_data)
# Load audio from binary data, explicitly specifying the format
audio_tensor, sample_rate = torchaudio.load(temp_file, format="wav")
# Resample if needed
if sample_rate != generator.sample_rate:
audio_tensor = torchaudio.functional.resample(
audio_tensor.squeeze(0),
orig_freq=sample_rate,
new_freq=generator.sample_rate
)
else:
audio_tensor = audio_tensor.squeeze(0)
return audio_tensor
except Exception as e:
print(f"Error decoding audio: {str(e)}")
# Return a small silent audio segment as fallback
return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence
async def encode_audio_data(audio_tensor: torch.Tensor) -> str:
"""Encode torch tensor audio to base64 string"""
buf = BytesIO()
torchaudio.save(buf, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
buf.seek(0)
audio_base64 = base64.b64encode(buf.read()).decode('utf-8')
return f"data:audio/wav;base64,{audio_base64}"
async def transcribe_audio(audio_tensor: torch.Tensor) -> str:
"""Transcribe audio using WhisperX"""
try:
# Save the tensor to a temporary file
temp_file = BytesIO()
torchaudio.save(temp_file, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
temp_file.seek(0)
# Create a temporary file on disk (WhisperX requires a file path)
temp_path = "temp_audio.wav"
with open(temp_path, "wb") as f:
f.write(temp_file.read())
# Load and transcribe the audio
audio = whisperx.load_audio(temp_path)
result = asr_model.transcribe(audio, batch_size=16)
# Clean up
os.remove(temp_path)
# Get the transcription text
if result["segments"] and len(result["segments"]) > 0:
# Combine all segments
transcription = " ".join([segment["text"] for segment in result["segments"]])
print(f"Transcription: {transcription}")
return transcription.strip()
else:
return ""
except Exception as e:
print(f"Error in transcription: {str(e)}")
return ""
async def generate_response(text: str, conversation_history: List[Segment]) -> str:
"""Generate a contextual response based on the transcribed text"""
# Simple response logic - can be replaced with a more sophisticated LLM in the future
responses = {
"hello": "Hello there! How are you doing today?",
"how are you": "I'm doing well, thanks for asking! How about you?",
"what is your name": "I'm Sesame, your voice assistant. How can I help you?",
"bye": "Goodbye! It was nice chatting with you.",
"thank you": "You're welcome! Is there anything else I can help with?",
"weather": "I don't have real-time weather data, but I hope it's nice where you are!",
"help": "I can chat with you using natural voice. Just speak normally and I'll respond.",
}
text_lower = text.lower()
# Check for matching keywords
for key, response in responses.items():
if key in text_lower:
return response
# Default responses based on text length
if not text:
return "I didn't catch that. Could you please repeat?"
elif len(text) < 10:
return "Thanks for your message. Could you elaborate a bit more?"
else:
return f"I understand you said '{text}'. That's interesting! Can you tell me more about that?"
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await manager.connect(websocket)
context_segments = [] # Store conversation context
streaming_buffer = [] # Buffer for streaming audio chunks
is_streaming = False
# Variables for silence detection
last_active_time = time.time()
is_silence = False
energy_window = deque(maxlen=10) # For tracking recent audio energy
try:
while True:
# Receive JSON data from client
data = await websocket.receive_text()
request = json.loads(data)
action = request.get("action")
if action == "generate":
try:
text = request.get("text", "")
speaker_id = request.get("speaker", 0)
# Generate audio response
print(f"Generating audio for: '{text}' with speaker {speaker_id}")
audio_tensor = generator.generate(
text=text,
speaker=speaker_id,
context=context_segments,
max_audio_length_ms=10_000,
)
# Add to conversation context
context_segments.append(Segment(text=text, speaker=speaker_id, audio=audio_tensor))
# Convert audio to base64 and send back to client
audio_base64 = await encode_audio_data(audio_tensor)
await websocket.send_json({
"type": "audio_response",
"audio": audio_base64
})
except Exception as e:
print(f"Error generating audio: {str(e)}")
await websocket.send_json({
"type": "error",
"message": f"Error generating audio: {str(e)}"
})
elif action == "add_to_context":
try:
text = request.get("text", "")
speaker_id = request.get("speaker", 0)
audio_data = request.get("audio", "")
# Convert received audio to tensor
audio_tensor = await decode_audio_data(audio_data)
# Add to conversation context
context_segments.append(Segment(text=text, speaker=speaker_id, audio=audio_tensor))
await websocket.send_json({
"type": "context_updated",
"message": "Audio added to context"
})
except Exception as e:
print(f"Error adding to context: {str(e)}")
await websocket.send_json({
"type": "error",
"message": f"Error processing audio: {str(e)}"
})
elif action == "clear_context":
context_segments = []
await websocket.send_json({
"type": "context_updated",
"message": "Context cleared"
})
elif action == "stream_audio":
try:
speaker_id = request.get("speaker", 0)
audio_data = request.get("audio", "")
# Convert received audio to tensor
audio_chunk = await decode_audio_data(audio_data)
# Start streaming mode if not already started
if not is_streaming:
is_streaming = True
streaming_buffer = []
energy_window.clear()
is_silence = False
last_active_time = time.time()
await websocket.send_json({
"type": "streaming_status",
"status": "started"
})
# Calculate audio energy for silence detection
chunk_energy = torch.mean(torch.abs(audio_chunk)).item()
energy_window.append(chunk_energy)
avg_energy = sum(energy_window) / len(energy_window)
# Check if audio is silent
current_silence = avg_energy < SILENCE_THRESHOLD
# Track silence transition
if not is_silence and current_silence:
# Transition to silence
is_silence = True
last_active_time = time.time()
elif is_silence and not current_silence:
# User started talking again
is_silence = False
# Add chunk to buffer regardless of silence state
streaming_buffer.append(audio_chunk)
# Check if silence has persisted long enough to consider "stopped talking"
silence_elapsed = time.time() - last_active_time
if is_silence and silence_elapsed >= SILENCE_DURATION_SEC and len(streaming_buffer) > 0:
# User has stopped talking - process the collected audio
full_audio = torch.cat(streaming_buffer, dim=0)
# Process with WhisperX speech-to-text
transcribed_text = await transcribe_audio(full_audio)
# Log the transcription
print(f"Transcribed text: '{transcribed_text}'")
# Add to conversation context
if transcribed_text:
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
context_segments.append(user_segment)
# Generate a contextual response
response_text = await generate_response(transcribed_text, context_segments)
# Send the transcribed text to client
await websocket.send_json({
"type": "transcription",
"text": transcribed_text
})
# Generate audio for the response
audio_tensor = generator.generate(
text=response_text,
speaker=1 if speaker_id == 0 else 0, # Use opposite speaker
context=context_segments,
max_audio_length_ms=10_000,
)
# Add response to context
ai_segment = Segment(
text=response_text,
speaker=1 if speaker_id == 0 else 0,
audio=audio_tensor
)
context_segments.append(ai_segment)
# Convert audio to base64 and send back to client
audio_base64 = await encode_audio_data(audio_tensor)
await websocket.send_json({
"type": "audio_response",
"text": response_text,
"audio": audio_base64
})
else:
# If transcription failed, send a generic response
await websocket.send_json({
"type": "error",
"message": "Sorry, I couldn't understand what you said. Could you try again?"
})
# Clear buffer and reset silence detection
streaming_buffer = []
energy_window.clear()
is_silence = False
last_active_time = time.time()
# If buffer gets too large without silence, process it anyway
# This prevents memory issues with very long streams
elif len(streaming_buffer) >= 30: # ~6 seconds of audio at 5 chunks/sec
print("Buffer limit reached, processing audio")
full_audio = torch.cat(streaming_buffer, dim=0)
# Process with WhisperX speech-to-text
transcribed_text = await transcribe_audio(full_audio)
if transcribed_text:
context_segments.append(Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio))
# Send the transcribed text to client
await websocket.send_json({
"type": "transcription",
"text": transcribed_text + " (processing continued speech...)"
})
streaming_buffer = []
except Exception as e:
print(f"Error processing streaming audio: {str(e)}")
await websocket.send_json({
"type": "error",
"message": f"Error processing streaming audio: {str(e)}"
})
elif action == "stop_streaming":
is_streaming = False
if streaming_buffer and len(streaming_buffer) > 5: # Only process if there's meaningful audio
# Process any remaining audio in the buffer
full_audio = torch.cat(streaming_buffer, dim=0)
# Process with WhisperX speech-to-text
transcribed_text = await transcribe_audio(full_audio)
if transcribed_text:
context_segments.append(Segment(text=transcribed_text, speaker=request.get("speaker", 0), audio=full_audio))
# Send the transcribed text to client
await websocket.send_json({
"type": "transcription",
"text": transcribed_text
})
streaming_buffer = []
await websocket.send_json({
"type": "streaming_status",
"status": "stopped"
})
except WebSocketDisconnect:
manager.disconnect(websocket)
print("Client disconnected")
except Exception as e:
print(f"Error: {str(e)}")
try:
await websocket.send_json({
"type": "error",
"message": str(e)
})
except:
pass
manager.disconnect(websocket)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)