import os import sys from pathlib import Path # Add backend directory to path so we can import src sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from dotenv import load_dotenv load_dotenv() from src.rag.ingest import process_file from src.rag.store import ingest_documents from src.mongo.vector_store import is_file_processed, log_processed_file def populate_from_dataset(dataset_dir): dataset_path = Path(dataset_dir) if not dataset_path.exists(): print(f"Dataset directory not found: {dataset_dir}") return print(f"Scanning {dataset_dir}...") total_chunks = 0 files_processed = 0 for file_path in dataset_path.glob('*'): if file_path.is_file() and file_path.suffix.lower() in ['.csv', '.pdf']: if is_file_processed(file_path.name): print(f"Skipping {file_path.name} (already processed)") continue print(f"Processing {file_path.name}...") try: chunks = process_file(str(file_path)) if chunks: count = ingest_documents(chunks) print(f" Ingested {count} chunks.") if count > 0: log_processed_file(file_path.name) total_chunks += count files_processed += 1 else: print(" No text found/extracted.") except Exception as e: print(f" Error processing file: {e}") print(f"\nFinished! Processed {files_processed} files. Total chunks ingested: {total_chunks}") if __name__ == "__main__": # Assuming run from backend/ dataset_dir = os.path.join(os.path.dirname(__file__), '../dataset') populate_from_dataset(dataset_dir)