{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import dask.dataframe as dd" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " image label\n", "0 {'bytes': b'\\xff\\xd8\\xff\\xe0\\x00\\x10JFIF\\x00\\x... 0\n", "1 {'bytes': b'\\xff\\xd8\\xff\\xe0\\x00\\x10JFIF\\x00\\x... 0\n", "2 {'bytes': b'\\xff\\xd8\\xff\\xe0\\x00\\x10JFIF\\x00\\x... 0\n", "3 {'bytes': b'\\xff\\xd8\\xff\\xe0\\x00\\x10JFIF\\x00\\x... 0\n", "4 {'bytes': b'\\xff\\xd8\\xff\\xe0\\x00\\x10JFIF\\x00\\x... 0\n" ] } ], "source": [ "df = dd.read_parquet(\"hf://datasets/edwinpalegre/trashnet_enhanced/data/train-*.parquet\")\n", "\n", "print(df.show())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 2 }