import dask.dataframe as dd from azure.cognitiveservices.vision.customvision.training import CustomVisionTrainingClient from azure.cognitiveservices.vision.customvision.prediction import CustomVisionPredictionClient from azure.cognitiveservices.vision.customvision.training.models import ImageFileCreateBatch, ImageFileCreateEntry, Region from msrest.authentication import ApiKeyCredentials import os, time, uuid ENDPOINT = "https://trashvision.cognitiveservices.azure.com/" training_key = "611e786a785648e38f346f18e7f7e7ed" prediction_key = "611e786a785648e38f346f18e7f7e7ed" project_id = "a67f7d7b-c980-49bd-b57d-0bd1367b29d0" credentials = ApiKeyCredentials(in_headers={"Training-key": training_key}) trainer = CustomVisionTrainingClient(ENDPOINT, credentials) prediction_credentials = ApiKeyCredentials(in_headers={"Prediction-key": prediction_key}) predictor = CustomVisionPredictionClient(ENDPOINT, prediction_credentials) print ("Training...") iteration = trainer.train_project(project_id) while (iteration.status != "Completed"): iteration = trainer.get_iteration(project_id, iteration.id) print ("Training status: " + iteration.status) time.sleep(1) # The iteration is now trained. Publish it to the project endpoint trainer.publish_iteration(project_id, iteration.id, "HaxNet1", predictor) print ("Done!")