Added LLM and MongoDB Agent Scripts
This commit is contained in:
547
llm/gemini_reroute.py
Normal file
547
llm/gemini_reroute.py
Normal file
@@ -0,0 +1,547 @@
|
||||
import os
|
||||
import requests
|
||||
import json
|
||||
from datetime import datetime
|
||||
from pymongo import MongoClient
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
from math import radians, sin, cos, sqrt, atan2, degrees, atan2
|
||||
from typing import List, Tuple, Dict, Optional
|
||||
|
||||
|
||||
|
||||
|
||||
# Configuration
|
||||
GEMINI_API_KEY = "AIzaSyBCbEOo4aK72507hqvpYkE9zXUe-z5aSXA"
|
||||
OPENWEATHER_API_KEY = "8754b3f387fc0f1d96a81f73e303e181"
|
||||
MONGO_URI = "mongodb+srv://Admin:HelloKitty420@geobase.tyxsoir.mongodb.net/crashes"
|
||||
MAPBOX_API_KEY = "pk.eyJ1IjoicGllbG9yZDc1NyIsImEiOiJjbWcxdTd6c3AwMXU1MmtxMDh6b2l5amVrIn0.5Es0azrah23GX1e9tmbjGw"
|
||||
|
||||
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-lite", api_key=GEMINI_API_KEY)
|
||||
|
||||
class SafeRouteAnalyzer:
|
||||
def __init__(self, mongo_uri: str):
|
||||
"""Initialize the safe route analyzer with MongoDB connection."""
|
||||
try:
|
||||
self.client = MongoClient(mongo_uri)
|
||||
self.client.admin.command('ping')
|
||||
self.db = self.client.crashes
|
||||
self.collection = self.db.crashes
|
||||
print("✅ Connected to MongoDB for route safety analysis")
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to connect to MongoDB: {e}")
|
||||
self.collection = None
|
||||
|
||||
def haversine_distance(self, lat1: float, lon1: float, lat2: float, lon2: float) -> float:
|
||||
"""Calculate distance between two points in kilometers."""
|
||||
lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2])
|
||||
dlat = lat2 - lat1
|
||||
dlon = lon2 - lon1
|
||||
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1-a))
|
||||
return 6371 * c # Earth's radius in km
|
||||
|
||||
def get_route_from_mapbox(self, start_lat: float, start_lon: float,
|
||||
end_lat: float, end_lon: float, profile: str = "driving") -> Dict:
|
||||
"""
|
||||
Get route from Mapbox Directions API.
|
||||
|
||||
Args:
|
||||
start_lat, start_lon: Starting coordinates
|
||||
end_lat, end_lon: Destination coordinates
|
||||
profile: 'driving', 'walking', or 'cycling'
|
||||
|
||||
Returns:
|
||||
Route data with coordinates, distance, duration
|
||||
"""
|
||||
try:
|
||||
url = f"https://api.mapbox.com/directions/v5/mapbox/{profile}/{start_lon},{start_lat};{end_lon},{end_lat}"
|
||||
params = {
|
||||
'access_token': MAPBOX_API_KEY,
|
||||
'overview': 'full',
|
||||
'geometries': 'geojson',
|
||||
'steps': 'true'
|
||||
}
|
||||
|
||||
response = requests.get(url, params=params, timeout=15)
|
||||
response.raise_for_status()
|
||||
|
||||
data = response.json()
|
||||
|
||||
if data.get('code') == 'Ok' and data.get('routes'):
|
||||
route = data['routes'][0]
|
||||
geometry = route['geometry']
|
||||
|
||||
# Extract coordinates from GeoJSON format
|
||||
coordinates = [[coord[1], coord[0]] for coord in geometry['coordinates']] # Convert [lon,lat] to [lat,lon]
|
||||
|
||||
return {
|
||||
'success': True,
|
||||
'coordinates': coordinates, # List of [lat, lon] pairs
|
||||
'distance_km': route['distance'] / 1000,
|
||||
'duration_min': route['duration'] / 60,
|
||||
'geometry': geometry
|
||||
}
|
||||
else:
|
||||
error_msg = data.get('message', 'No route found')
|
||||
return {'success': False, 'error': error_msg}
|
||||
|
||||
except Exception as e:
|
||||
return {'success': False, 'error': str(e)}
|
||||
|
||||
def get_alternative_routes_mapbox(self, start_lat: float, start_lon: float,
|
||||
end_lat: float, end_lon: float, num_alternatives: int = 3) -> List[Dict]:
|
||||
"""
|
||||
Get multiple alternative routes using Mapbox Directions API.
|
||||
"""
|
||||
try:
|
||||
url = f"https://api.mapbox.com/directions/v5/mapbox/driving/{start_lon},{start_lat};{end_lon},{end_lat}"
|
||||
params = {
|
||||
'access_token': MAPBOX_API_KEY,
|
||||
'alternatives': 'true', # Request alternatives
|
||||
'overview': 'full',
|
||||
'geometries': 'geojson',
|
||||
'steps': 'false'
|
||||
}
|
||||
|
||||
response = requests.get(url, params=params, timeout=15)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
routes = []
|
||||
if data.get('code') == 'Ok' and data.get('routes'):
|
||||
for i, route in enumerate(data['routes'][:num_alternatives]):
|
||||
geometry = route['geometry']
|
||||
coordinates = [[coord[1], coord[0]] for coord in geometry['coordinates']] # Convert [lon,lat] to [lat,lon]
|
||||
|
||||
routes.append({
|
||||
'route_id': i,
|
||||
'coordinates': coordinates,
|
||||
'distance_km': route['distance'] / 1000,
|
||||
'duration_min': route['duration'] / 60,
|
||||
'geometry': geometry
|
||||
})
|
||||
|
||||
return routes
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error getting alternative routes: {e}")
|
||||
return []
|
||||
|
||||
def analyze_route_safety(self, route_coordinates: List[Tuple[float, float]],
|
||||
buffer_km: float = 0.2) -> Dict:
|
||||
"""
|
||||
Analyze safety along a route by checking for crashes near route points.
|
||||
|
||||
Args:
|
||||
route_coordinates: List of (lat, lon) tuples along the route
|
||||
buffer_km: How far to look for crashes around each route point
|
||||
|
||||
Returns:
|
||||
Safety analysis data
|
||||
"""
|
||||
if self.collection is None:
|
||||
return {'error': 'No database connection'}
|
||||
|
||||
try:
|
||||
all_nearby_crashes = []
|
||||
safety_scores = []
|
||||
|
||||
# Sample every Nth point to avoid too many queries (adjust based on route length)
|
||||
sample_interval = max(1, len(route_coordinates) // 20) # Max 20 sample points
|
||||
sample_points = route_coordinates[::sample_interval]
|
||||
|
||||
print(f"🔍 Analyzing safety at {len(sample_points)} points along route...")
|
||||
|
||||
for i, (lat, lon) in enumerate(sample_points):
|
||||
# Query crashes within buffer distance of this route point
|
||||
radius_radians = buffer_km / 6371
|
||||
|
||||
query = {
|
||||
"location": {
|
||||
"$geoWithin": {
|
||||
"$centerSphere": [[lon, lat], radius_radians]
|
||||
}
|
||||
},
|
||||
"reportDate": {
|
||||
"$gte": datetime(2020, 1, 1)
|
||||
}
|
||||
}
|
||||
|
||||
crashes_near_point = list(self.collection.find(query))
|
||||
|
||||
# Calculate safety score for this point (lower = safer)
|
||||
point_safety_score = self.calculate_point_safety_score(crashes_near_point)
|
||||
safety_scores.append({
|
||||
'point_index': i * sample_interval,
|
||||
'coordinates': [lat, lon],
|
||||
'crashes_count': len(crashes_near_point),
|
||||
'safety_score': point_safety_score
|
||||
})
|
||||
|
||||
all_nearby_crashes.extend(crashes_near_point)
|
||||
|
||||
# Remove duplicate crashes
|
||||
unique_crashes = {}
|
||||
for crash in all_nearby_crashes:
|
||||
crash_id = crash.get('crashId', str(crash.get('_id')))
|
||||
if crash_id not in unique_crashes:
|
||||
unique_crashes[crash_id] = crash
|
||||
|
||||
unique_crashes_list = list(unique_crashes.values())
|
||||
|
||||
# Calculate overall route safety metrics
|
||||
total_crashes = len(unique_crashes_list)
|
||||
avg_safety_score = sum(point['safety_score'] for point in safety_scores) / len(safety_scores) if safety_scores else 0
|
||||
max_danger_score = max((point['safety_score'] for point in safety_scores), default=0)
|
||||
|
||||
return {
|
||||
'total_crashes_near_route': total_crashes,
|
||||
'average_safety_score': avg_safety_score,
|
||||
'max_danger_score': max_danger_score,
|
||||
'safety_points': safety_scores,
|
||||
'crashes_data': unique_crashes_list,
|
||||
'route_length_points': len(route_coordinates)
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {'error': str(e)}
|
||||
|
||||
def calculate_point_safety_score(self, crashes: List[Dict]) -> float:
|
||||
"""
|
||||
Calculate a safety score for a point based on nearby crashes.
|
||||
Higher score = more dangerous
|
||||
"""
|
||||
if not crashes:
|
||||
return 0.0
|
||||
|
||||
score = 0.0
|
||||
|
||||
for crash in crashes:
|
||||
# Base score for any crash
|
||||
base_score = 1.0
|
||||
|
||||
# Weight by severity
|
||||
severity = crash.get('severity', '').lower()
|
||||
if 'fatal' in severity or 'major' in severity:
|
||||
base_score *= 3.0
|
||||
elif 'minor' in severity:
|
||||
base_score *= 1.5
|
||||
|
||||
# Weight by casualty count
|
||||
casualties = crash.get('casualties', {})
|
||||
total_casualties = 0
|
||||
for category in ['bicyclists', 'drivers', 'pedestrians', 'passengers']:
|
||||
if category in casualties:
|
||||
cat_data = casualties[category]
|
||||
total_casualties += (cat_data.get('fatal', 0) * 5 +
|
||||
cat_data.get('major_injuries', 0) * 2 +
|
||||
cat_data.get('minor_injuries', 0) * 1)
|
||||
|
||||
base_score += total_casualties * 0.5
|
||||
|
||||
# Weight by circumstances
|
||||
circumstances = crash.get('circumstances', {})
|
||||
if circumstances.get('speeding_involved', False):
|
||||
base_score *= 1.3
|
||||
if any([circumstances.get('pedestrians_impaired', False),
|
||||
circumstances.get('bicyclists_impaired', False),
|
||||
circumstances.get('drivers_impaired', False)]):
|
||||
base_score *= 1.4
|
||||
|
||||
score += base_score
|
||||
|
||||
return score
|
||||
|
||||
def generate_safety_report_with_llm(self, route_safety_data: Dict,
|
||||
route_info: Dict, weather_summary: str = None) -> str:
|
||||
"""
|
||||
Use LLM to generate comprehensive safety report and route recommendations.
|
||||
"""
|
||||
if 'error' in route_safety_data:
|
||||
return f"Error analyzing route safety: {route_safety_data['error']}"
|
||||
|
||||
crashes = route_safety_data.get('crashes_data', [])
|
||||
safety_points = route_safety_data.get('safety_points', [])
|
||||
|
||||
# Find most dangerous sections
|
||||
dangerous_points = sorted(safety_points, key=lambda x: x['safety_score'], reverse=True)[:3]
|
||||
|
||||
# Analyze crash patterns
|
||||
severity_counts = {}
|
||||
casualty_summary = {'fatal': 0, 'major': 0, 'minor': 0}
|
||||
risk_factors = {'speeding': 0, 'impairment': 0, 'pedestrian': 0, 'bicyclist': 0}
|
||||
|
||||
for crash in crashes:
|
||||
severity = crash.get('severity', 'Unknown')
|
||||
severity_counts[severity] = severity_counts.get(severity, 0) + 1
|
||||
|
||||
# Count casualties
|
||||
casualties = crash.get('casualties', {})
|
||||
for category in ['bicyclists', 'drivers', 'pedestrians', 'passengers']:
|
||||
if category in casualties:
|
||||
cat_data = casualties[category]
|
||||
casualty_summary['fatal'] += cat_data.get('fatal', 0)
|
||||
casualty_summary['major'] += cat_data.get('major_injuries', 0)
|
||||
casualty_summary['minor'] += cat_data.get('minor_injuries', 0)
|
||||
|
||||
# Count risk factors
|
||||
circumstances = crash.get('circumstances', {})
|
||||
if circumstances.get('speeding_involved', False):
|
||||
risk_factors['speeding'] += 1
|
||||
if any([circumstances.get(f'{cat}_impaired', False) for cat in ['pedestrians', 'bicyclists', 'drivers']]):
|
||||
risk_factors['impairment'] += 1
|
||||
if casualties.get('pedestrians', {}).get('total', 0) > 0:
|
||||
risk_factors['pedestrian'] += 1
|
||||
if casualties.get('bicyclists', {}).get('total', 0) > 0:
|
||||
risk_factors['bicyclist'] += 1
|
||||
|
||||
weather_info = f"\n\nCURRENT WEATHER CONDITIONS:\n{weather_summary}" if weather_summary else ""
|
||||
|
||||
prompt = f"""You are an expert traffic safety analyst and route planning specialist. Analyze this route's safety profile and provide recommendations.
|
||||
|
||||
ROUTE INFORMATION:
|
||||
- Distance: {route_info.get('distance_km', 0):.1f} km
|
||||
- Estimated duration: {route_info.get('duration_min', 0):.0f} minutes
|
||||
- Analysis points along route: {len(safety_points)}
|
||||
|
||||
SAFETY ANALYSIS (2020+ crash data):
|
||||
- Total crashes near route: {route_safety_data.get('total_crashes_near_route', 0)}
|
||||
- Average safety score: {route_safety_data.get('average_safety_score', 0):.2f}
|
||||
- Maximum danger score: {route_safety_data.get('max_danger_score', 0):.2f}
|
||||
|
||||
CRASH BREAKDOWN:
|
||||
- Severity distribution: {severity_counts}
|
||||
- Casualties: {casualty_summary['fatal']} fatal, {casualty_summary['major']} major injuries, {casualty_summary['minor']} minor injuries
|
||||
- Risk factors: {risk_factors['speeding']} speeding-related, {risk_factors['impairment']} impairment-related
|
||||
- Vulnerable users: {risk_factors['pedestrian']} pedestrian crashes, {risk_factors['bicyclist']} bicyclist crashes
|
||||
|
||||
MOST DANGEROUS SECTIONS:
|
||||
{chr(10).join([f"Point {p['point_index']}: {p['crashes_count']} crashes nearby, safety score {p['safety_score']:.1f}" for p in dangerous_points[:3]])}
|
||||
{weather_info}
|
||||
|
||||
Please provide:
|
||||
1. Overall route safety assessment (SAFE/MODERATE RISK/HIGH RISK/DANGEROUS)
|
||||
2. Specific dangerous sections to watch out for
|
||||
3. Driving recommendations for this route considering current conditions
|
||||
4. Whether an alternative route should be recommended
|
||||
5. Time-of-day considerations if applicable
|
||||
6. Weather-specific precautions based on crash patterns
|
||||
|
||||
Be specific and actionable in your recommendations."""
|
||||
|
||||
try:
|
||||
response = llm.invoke(prompt)
|
||||
return response.content
|
||||
except Exception as e:
|
||||
return f"Error generating safety analysis: {e}"
|
||||
|
||||
def find_safer_route(self, start_lat: float, start_lon: float,
|
||||
end_lat: float, end_lon: float) -> Dict:
|
||||
"""
|
||||
Find the safest route among alternatives by analyzing crash data.
|
||||
"""
|
||||
print("🗺️ Getting alternative routes...")
|
||||
|
||||
# Get multiple route options
|
||||
alternative_routes = self.get_alternative_routes_mapbox(start_lat, start_lon, end_lat, end_lon)
|
||||
|
||||
if not alternative_routes:
|
||||
print("❌ No routes found")
|
||||
return {'error': 'No routes available'}
|
||||
|
||||
print(f"📍 Analyzing {len(alternative_routes)} route options for safety...")
|
||||
|
||||
# Analyze safety for each route
|
||||
route_analyses = []
|
||||
for i, route in enumerate(alternative_routes):
|
||||
print(f"🔍 Analyzing route {i+1}/{len(alternative_routes)}...")
|
||||
|
||||
safety_analysis = self.analyze_route_safety(route['coordinates'])
|
||||
|
||||
if 'error' not in safety_analysis:
|
||||
route_analyses.append({
|
||||
'route_id': i,
|
||||
'route_data': route,
|
||||
'safety_analysis': safety_analysis,
|
||||
'safety_score': safety_analysis.get('average_safety_score', float('inf'))
|
||||
})
|
||||
|
||||
if not route_analyses:
|
||||
return {'error': 'Could not analyze any routes for safety'}
|
||||
|
||||
# Sort routes by safety (lower score = safer)
|
||||
route_analyses.sort(key=lambda x: x['safety_score'])
|
||||
|
||||
# Get weather for additional context
|
||||
weather_data, weather_summary = self.get_current_weather(start_lat, start_lon)
|
||||
|
||||
# Generate safety reports for top routes
|
||||
results = {
|
||||
'recommended_route': route_analyses[0],
|
||||
'alternative_routes': route_analyses[1:],
|
||||
'weather_summary': weather_summary
|
||||
}
|
||||
|
||||
# Generate LLM analysis for the safest route
|
||||
safest_route = route_analyses[0]
|
||||
safety_report = self.generate_safety_report_with_llm(
|
||||
safest_route['safety_analysis'],
|
||||
safest_route['route_data'],
|
||||
weather_summary
|
||||
)
|
||||
|
||||
results['safety_report'] = safety_report
|
||||
results['route_comparison'] = self.compare_routes_with_llm(route_analyses, weather_summary)
|
||||
|
||||
return results
|
||||
|
||||
def compare_routes_with_llm(self, route_analyses: List[Dict], weather_summary: str = None) -> str:
|
||||
"""
|
||||
Use LLM to compare multiple routes and explain why one is safer.
|
||||
"""
|
||||
if len(route_analyses) < 2:
|
||||
return "Only one route available for analysis."
|
||||
|
||||
comparison_data = []
|
||||
for i, analysis in enumerate(route_analyses):
|
||||
route_data = analysis['route_data']
|
||||
safety_data = analysis['safety_analysis']
|
||||
|
||||
comparison_data.append({
|
||||
'route_num': i + 1,
|
||||
'distance_km': route_data.get('distance_km', 0),
|
||||
'duration_min': route_data.get('duration_min', 0),
|
||||
'crashes_near_route': safety_data.get('total_crashes_near_route', 0),
|
||||
'safety_score': safety_data.get('average_safety_score', 0),
|
||||
'max_danger_score': safety_data.get('max_danger_score', 0)
|
||||
})
|
||||
|
||||
weather_info = f"\nCurrent weather: {weather_summary}" if weather_summary else ""
|
||||
|
||||
prompt = f"""Compare these route options for safety and provide a recommendation:
|
||||
|
||||
ROUTE OPTIONS:
|
||||
{chr(10).join([f"Route {r['route_num']}: {r['distance_km']:.1f}km, {r['duration_min']:.0f}min, {r['crashes_near_route']} nearby crashes, safety score {r['safety_score']:.2f}" for r in comparison_data])}{weather_info}
|
||||
|
||||
Provide:
|
||||
1. Which route is safest and why
|
||||
2. Trade-offs between routes (safety vs. time/distance)
|
||||
3. Clear recommendation with reasoning
|
||||
4. Any weather-related considerations
|
||||
|
||||
Keep it concise and actionable."""
|
||||
|
||||
try:
|
||||
response = llm.invoke(prompt)
|
||||
return response.content
|
||||
except Exception as e:
|
||||
return f"Error comparing routes: {e}"
|
||||
|
||||
def get_current_weather(self, lat: float, lon: float) -> Tuple[Optional[Dict], str]:
|
||||
"""Get current weather conditions."""
|
||||
try:
|
||||
url = "https://api.openweathermap.org/data/2.5/weather"
|
||||
response = requests.get(
|
||||
url,
|
||||
params={"lat": lat, "lon": lon, "appid": OPENWEATHER_API_KEY, "units": "metric"},
|
||||
timeout=10
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
main = data.get("main", {})
|
||||
weather = data.get("weather", [{}])[0]
|
||||
wind = data.get("wind", {})
|
||||
|
||||
summary = f"{main.get('temp', 'N/A')}°C, {weather.get('description', 'N/A')}, wind {wind.get('speed', 'N/A')} m/s"
|
||||
return data, summary
|
||||
|
||||
except Exception as e:
|
||||
return None, f"Weather unavailable: {e}"
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
Demo function showing how to use the SafeRouteAnalyzer.
|
||||
"""
|
||||
print("🛣️ Safe Route Planning System")
|
||||
print("=" * 50)
|
||||
|
||||
analyzer = SafeRouteAnalyzer(MONGO_URI)
|
||||
|
||||
if analyzer.collection is None:
|
||||
print("❌ Cannot proceed without database connection")
|
||||
return
|
||||
|
||||
# Get input
|
||||
try:
|
||||
print("\n📍 Enter route details:")
|
||||
start_lat = float(input("Starting latitude: "))
|
||||
start_lon = float(input("Starting longitude: "))
|
||||
end_lat = float(input("Destination latitude: "))
|
||||
end_lon = float(input("Destination longitude: "))
|
||||
|
||||
print(f"\n🚗 Planning safe route from ({start_lat:.4f}, {start_lon:.4f}) to ({end_lat:.4f}, {end_lon:.4f})")
|
||||
|
||||
# Find the safest route
|
||||
results = analyzer.find_safer_route(start_lat, start_lon, end_lat, end_lon)
|
||||
|
||||
if 'error' in results:
|
||||
print(f"❌ Error: {results['error']}")
|
||||
return
|
||||
|
||||
# Display results
|
||||
recommended = results['recommended_route']
|
||||
route_data = recommended['route_data']
|
||||
safety_data = recommended['safety_analysis']
|
||||
|
||||
print("\n" + "="*50)
|
||||
print("🏆 RECOMMENDED SAFE ROUTE")
|
||||
print("="*50)
|
||||
print(f"📏 Distance: {route_data['distance_km']:.1f} km")
|
||||
print(f"⏱️ Duration: {route_data['duration_min']:.0f} minutes")
|
||||
print(f"🚨 Crashes nearby: {safety_data['total_crashes_near_route']}")
|
||||
print(f"📊 Safety score: {safety_data['average_safety_score']:.2f} (lower is safer)")
|
||||
|
||||
print(f"\n🌤️ Weather: {results.get('weather_summary', 'N/A')}")
|
||||
|
||||
print("\n📋 SAFETY ANALYSIS:")
|
||||
print("-" * 30)
|
||||
print(results['safety_report'])
|
||||
|
||||
if len(results['alternative_routes']) > 0:
|
||||
print("\n🔄 ROUTE COMPARISON:")
|
||||
print("-" * 30)
|
||||
print(results['route_comparison'])
|
||||
|
||||
# Output for Mapbox visualization
|
||||
coordinates = recommended['route_data']['coordinates']
|
||||
print(f"\n🗺️ Route coordinates for Mapbox ({len(coordinates)} points):")
|
||||
print("First 5 points:", coordinates[:5])
|
||||
print("Last 5 points:", coordinates[-5:])
|
||||
|
||||
# You can save these coordinates to pass to your Mapbox visualization
|
||||
route_data_to_save = {
|
||||
'recommended_route': coordinates,
|
||||
'route_info': route_data,
|
||||
'safety_summary': {
|
||||
'total_crashes': safety_data['total_crashes_near_route'],
|
||||
'average_safety_score': safety_data['average_safety_score'],
|
||||
'max_danger_score': safety_data['max_danger_score']
|
||||
}
|
||||
}
|
||||
|
||||
with open('safe_route_coordinates.json', 'w') as f:
|
||||
json.dump(route_data_to_save, f, indent=2)
|
||||
print("📁 Route data saved to 'safe_route_coordinates.json'")
|
||||
|
||||
except ValueError:
|
||||
print("❌ Please enter valid numerical coordinates")
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Route planning cancelled")
|
||||
except Exception as e:
|
||||
print(f"❌ Error: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user