added the model
This commit is contained in:
158
roadcast/train.py
Normal file
158
roadcast/train.py
Normal file
@@ -0,0 +1,158 @@
|
||||
import os
|
||||
import time
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
from tqdm import tqdm
|
||||
|
||||
from data import ImageFolderDataset, CSVDataset
|
||||
from models import create_model
|
||||
|
||||
|
||||
def train(dataset_root, epochs=3, batch_size=16, lr=1e-3, device=None, num_classes=10, model_type='cnn', csv_label='label', generate_labels=False, n_buckets=100, label_method='md5', label_store=None, feature_engineer=False, lat_lon_bins=20, nrows=None, seed=42, hidden_dims=None, weight_decay=0.0):
|
||||
device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
# Detect CSV vs folder dataset
|
||||
if os.path.isfile(dataset_root) and dataset_root.lower().endswith('.csv'):
|
||||
dataset = CSVDataset(dataset_root,
|
||||
label_column=csv_label,
|
||||
generate_labels=generate_labels,
|
||||
n_buckets=n_buckets,
|
||||
label_method=label_method,
|
||||
label_store=label_store,
|
||||
feature_engineer=feature_engineer,
|
||||
lat_lon_bins=lat_lon_bins,
|
||||
nrows=nrows)
|
||||
# seed numpy/torch RNGs for reproducibility in experiments
|
||||
try:
|
||||
import numpy as _np
|
||||
_np.random.seed(seed)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
import random as _py_random
|
||||
_py_random.seed(seed)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
import torch as _torch
|
||||
_torch.manual_seed(seed)
|
||||
if _torch.cuda.is_available():
|
||||
_torch.cuda.manual_seed_all(seed)
|
||||
except Exception:
|
||||
pass
|
||||
# determine input dim for MLP
|
||||
input_dim = dataset.features.shape[1]
|
||||
# persist preprocessing metadata so inference can reuse identical stats
|
||||
try:
|
||||
import numpy as _np
|
||||
meta_path = os.path.join(os.getcwd(), 'preprocess_meta.npz')
|
||||
_np.savez_compressed(meta_path, feature_columns=_np.array(dataset.feature_columns, dtype=object), means=dataset.feature_means, stds=dataset.feature_stds)
|
||||
print(f'Saved preprocess meta to {meta_path}')
|
||||
except Exception:
|
||||
pass
|
||||
if model_type == 'cnn':
|
||||
raise ValueError('CSV dataset should use model_type="mlp"')
|
||||
# if we generated labels, infer the actual number of classes from the dataset labels
|
||||
if generate_labels and hasattr(dataset, 'labels'):
|
||||
try:
|
||||
model_num_classes = int(dataset.labels.max().item()) + 1
|
||||
except Exception:
|
||||
model_num_classes = n_buckets
|
||||
else:
|
||||
model_num_classes = n_buckets if generate_labels else num_classes
|
||||
# parse hidden_dims if provided by caller (tuple or list)
|
||||
model = create_model(device=device, model_type='mlp', input_dim=input_dim, num_classes=model_num_classes, hidden_dims=hidden_dims)
|
||||
else:
|
||||
# assume folder of images
|
||||
dataset = ImageFolderDataset(dataset_root)
|
||||
model = create_model(device=device, model_type='cnn', input_size=(3, 224, 224), num_classes=num_classes)
|
||||
|
||||
# simple train/val split
|
||||
val_size = max(1, int(0.1 * len(dataset)))
|
||||
train_size = len(dataset) - val_size
|
||||
train_set, val_set = random_split(dataset, [train_size, val_size])
|
||||
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
|
||||
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
|
||||
|
||||
best_val_acc = 0.0
|
||||
best_path = None
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}")
|
||||
for xb, yb in pbar:
|
||||
xb = xb.to(device)
|
||||
yb = yb.to(device)
|
||||
optimizer.zero_grad()
|
||||
outputs = model(xb)
|
||||
loss = criterion(outputs, yb)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
running_loss += loss.item()
|
||||
pbar.set_postfix(loss=running_loss / (pbar.n + 1))
|
||||
|
||||
# validation
|
||||
model.eval()
|
||||
correct = 0
|
||||
total = 0
|
||||
with torch.no_grad():
|
||||
for xb, yb in val_loader:
|
||||
xb = xb.to(device)
|
||||
yb = yb.to(device)
|
||||
outputs = model(xb)
|
||||
preds = outputs.argmax(dim=1)
|
||||
correct += (preds == yb).sum().item()
|
||||
total += yb.size(0)
|
||||
val_acc = correct / total if total > 0 else 0.0
|
||||
print(f"Epoch {epoch+1} val_acc={val_acc:.4f}")
|
||||
|
||||
# save best
|
||||
if val_acc > best_val_acc:
|
||||
out_path = os.path.join(os.getcwd(), 'model.pth')
|
||||
if hasattr(dataset, 'class_to_idx'):
|
||||
meta = {'model_state_dict': model.state_dict(), 'class_to_idx': dataset.class_to_idx}
|
||||
else:
|
||||
meta = {'model_state_dict': model.state_dict()}
|
||||
torch.save(meta, out_path)
|
||||
best_val_acc = val_acc
|
||||
best_path = out_path
|
||||
print(f"Saved best model to {out_path} (val_acc={val_acc:.4f})")
|
||||
|
||||
return best_path
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('data_root')
|
||||
parser.add_argument('--epochs', type=int, default=3)
|
||||
parser.add_argument('--batch-size', type=int, default=16)
|
||||
parser.add_argument('--lr', type=float, default=1e-3)
|
||||
parser.add_argument('--model-type', choices=['cnn', 'mlp'], default='cnn')
|
||||
parser.add_argument('--csv-label', default='label')
|
||||
parser.add_argument('--generate-labels', action='store_true', help='If set, generate labels from columns instead of expecting label column')
|
||||
parser.add_argument('--n-buckets', type=int, default=100, help='Number of label buckets when generating labels')
|
||||
parser.add_argument('--label-method', choices=['md5', 'kmeans'], default='md5', help='Method to generate labels when --generate-labels is set')
|
||||
parser.add_argument('--label-store', default=None, help='Path to save/load label metadata (e.g., kmeans centers .npz)')
|
||||
parser.add_argument('--subset', type=int, default=0, help='If set (>0), load only first N rows from CSV for fast experiments')
|
||||
parser.add_argument('--feature-engineer', action='store_true', help='If set, add simple date and lat/lon engineered features')
|
||||
parser.add_argument('--lat-lon-bins', type=int, default=20, help='Number of bins for lat/lon coarse spatial features')
|
||||
parser.add_argument('--seed', type=int, default=42, help='Random seed for experiments')
|
||||
parser.add_argument('--hidden-dims', type=str, default='', help='Comma-separated hidden dims for MLP, e.g. "256,128"')
|
||||
parser.add_argument('--weight-decay', type=float, default=0.0, help='Weight decay (L2) for optimizer')
|
||||
args = parser.parse_args()
|
||||
data_root = args.data_root
|
||||
nrows = args.subset if args.subset > 0 else None
|
||||
# parse hidden dims
|
||||
hidden_dims = None
|
||||
if args.hidden_dims:
|
||||
try:
|
||||
hidden_dims = tuple(int(x) for x in args.hidden_dims.split(',') if x.strip())
|
||||
except Exception:
|
||||
hidden_dims = None
|
||||
train(data_root, epochs=args.epochs, batch_size=args.batch_size, lr=args.lr, model_type=args.model_type, csv_label=args.csv_label, generate_labels=args.generate_labels, n_buckets=args.n_buckets, label_method=args.label_method, label_store=args.label_store, feature_engineer=args.feature_engineer, lat_lon_bins=args.lat_lon_bins, nrows=nrows, seed=args.seed, hidden_dims=hidden_dims, weight_decay=args.weight_decay)
|
||||
|
||||
Reference in New Issue
Block a user