Added meteo API functionality to the MongoDB agent and LLM summary
This commit is contained in:
377
llm/gemini_mongo_mateo.py
Normal file
377
llm/gemini_mongo_mateo.py
Normal file
@@ -0,0 +1,377 @@
|
||||
#MONGO_URI=mongodb+srv://Admin:HelloKitty420@geobase.tyxsoir.mongodb.net/crashes
|
||||
|
||||
import os
|
||||
import requests
|
||||
import time
|
||||
from datetime import datetime
|
||||
from pymongo import MongoClient
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
from math import radians, sin, cos, sqrt, atan2
|
||||
|
||||
# Configuration
|
||||
GEMINI_API_KEY = "AIzaSyBCbEOo4aK72507hqvpYkE9zXUe-z5aSXA"
|
||||
MONGO_URI = "mongodb+srv://Admin:HelloKitty420@geobase.tyxsoir.mongodb.net/crashes"
|
||||
|
||||
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-lite", api_key=GEMINI_API_KEY)
|
||||
|
||||
def connect_to_mongodb():
|
||||
"""
|
||||
Connect to MongoDB database and return the collection.
|
||||
"""
|
||||
try:
|
||||
print("Connecting to MongoDB...")
|
||||
client = MongoClient(MONGO_URI)
|
||||
# Test the connection
|
||||
client.admin.command('ping')
|
||||
print("✅ Successfully connected to MongoDB!")
|
||||
|
||||
db = client.crashes # Database name
|
||||
collection = db.crashes # Collection name - corrected to 'crashes'
|
||||
|
||||
# Get collection stats
|
||||
total_count = collection.estimated_document_count()
|
||||
print(f"📊 Found {total_count:,} total crash records in database")
|
||||
|
||||
# Check specifically for 2020+ data
|
||||
filter_2020_plus = {"reportDate": {"$gte": datetime(2020, 1, 1)}}
|
||||
count_2020_plus = collection.count_documents(filter_2020_plus)
|
||||
print(f"📅 Found {count_2020_plus:,} crash records from 2020 onward")
|
||||
|
||||
return collection
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to connect to MongoDB: {e}")
|
||||
return None
|
||||
|
||||
def get_crashes_within_radius_mongodb(collection, center_lat, center_lon, radius_km):
|
||||
"""
|
||||
Query MongoDB for crashes within specified radius using geospatial query.
|
||||
Filters for crashes from 2020 onward only.
|
||||
|
||||
Args:
|
||||
collection: MongoDB collection object
|
||||
center_lat: Latitude of center point
|
||||
center_lon: Longitude of center point
|
||||
radius_km: Radius in kilometers
|
||||
|
||||
Returns:
|
||||
List of crash documents within radius from 2020 onward
|
||||
"""
|
||||
try:
|
||||
print(f"🔍 Querying crashes within {radius_km}km of ({center_lat:.6f}, {center_lon:.6f}) from 2020 onward...")
|
||||
|
||||
# MongoDB geospatial query using $geoWithin and $centerSphere
|
||||
# $centerSphere uses radians, so convert km to radians (divide by Earth's radius in km)
|
||||
radius_radians = radius_km / 6371 # Earth's radius in km
|
||||
|
||||
# Combined query: geospatial AND date filter for 2020+
|
||||
query = {
|
||||
"location": {
|
||||
"$geoWithin": {
|
||||
"$centerSphere": [[center_lon, center_lat], radius_radians]
|
||||
}
|
||||
},
|
||||
"reportDate": {
|
||||
"$gte": datetime(2020, 1, 1) # Only crashes from 2020 onward
|
||||
}
|
||||
}
|
||||
|
||||
# Execute the query
|
||||
cursor = collection.find(query)
|
||||
crashes = list(cursor)
|
||||
|
||||
print(f"📍 Found {len(crashes)} crashes within {radius_km}km radius (from 2020 onward)")
|
||||
|
||||
# Add distance calculation to each crash for sorting
|
||||
for crash in crashes:
|
||||
if crash.get('location', {}).get('coordinates'):
|
||||
crash_lon, crash_lat = crash['location']['coordinates']
|
||||
distance = haversine_distance(center_lat, center_lon, crash_lat, crash_lon)
|
||||
crash['distance_km'] = distance
|
||||
|
||||
# Sort by distance
|
||||
crashes.sort(key=lambda x: x.get('distance_km', float('inf')))
|
||||
|
||||
return crashes
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error querying MongoDB: {e}")
|
||||
return []
|
||||
|
||||
def haversine_distance(lat1, lon1, lat2, lon2):
|
||||
"""
|
||||
Calculate the great circle distance between two points
|
||||
on the earth (specified in decimal degrees)
|
||||
Returns distance in kilometers
|
||||
"""
|
||||
# Convert decimal degrees to radians
|
||||
lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2])
|
||||
|
||||
# Haversine formula
|
||||
dlat = lat2 - lat1
|
||||
dlon = lon2 - lon1
|
||||
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
|
||||
c = 2 * atan2(sqrt(a), sqrt(1-a))
|
||||
|
||||
# Radius of earth in kilometers
|
||||
r = 6371
|
||||
|
||||
return c * r
|
||||
|
||||
def get_current_weather(lat, lon):
|
||||
"""
|
||||
Get current weather data from Open-Meteo API.
|
||||
"""
|
||||
try:
|
||||
url = "https://api.open-meteo.com/v1/forecast"
|
||||
response = requests.get(
|
||||
url,
|
||||
params={
|
||||
"latitude": lat,
|
||||
"longitude": lon,
|
||||
"current": "precipitation,wind_speed_10m,is_day,weather_code"
|
||||
},
|
||||
timeout=10
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
current = data.get("current", {})
|
||||
|
||||
# Map weather codes to descriptions (WMO Weather interpretation codes)
|
||||
weather_code_map = {
|
||||
0: "Clear sky",
|
||||
1: "Mainly clear",
|
||||
2: "Partly cloudy",
|
||||
3: "Overcast",
|
||||
45: "Fog",
|
||||
48: "Depositing rime fog",
|
||||
51: "Light drizzle",
|
||||
53: "Moderate drizzle",
|
||||
55: "Dense drizzle",
|
||||
56: "Light freezing drizzle",
|
||||
57: "Dense freezing drizzle",
|
||||
61: "Slight rain",
|
||||
63: "Moderate rain",
|
||||
65: "Heavy rain",
|
||||
66: "Light freezing rain",
|
||||
67: "Heavy freezing rain",
|
||||
71: "Slight snow fall",
|
||||
73: "Moderate snow fall",
|
||||
75: "Heavy snow fall",
|
||||
77: "Snow grains",
|
||||
80: "Slight rain showers",
|
||||
81: "Moderate rain showers",
|
||||
82: "Violent rain showers",
|
||||
85: "Slight snow showers",
|
||||
86: "Heavy snow showers",
|
||||
95: "Thunderstorm",
|
||||
96: "Thunderstorm with slight hail",
|
||||
99: "Thunderstorm with heavy hail"
|
||||
}
|
||||
|
||||
weather_code = current.get("weather_code", 0)
|
||||
weather_desc = weather_code_map.get(weather_code, "Unknown weather")
|
||||
precipitation = current.get("precipitation", 0)
|
||||
wind_speed = current.get("wind_speed_10m", 0)
|
||||
is_day = current.get("is_day", 1)
|
||||
|
||||
day_night = "day" if is_day else "night"
|
||||
|
||||
summary_parts = []
|
||||
summary_parts.append(f"Conditions: {weather_desc}")
|
||||
summary_parts.append(f"Precipitation: {precipitation}mm/h")
|
||||
summary_parts.append(f"Wind: {wind_speed} km/h")
|
||||
summary_parts.append(f"Time: {day_night}")
|
||||
|
||||
summary = " | ".join(summary_parts)
|
||||
|
||||
return data, summary
|
||||
|
||||
except Exception as e:
|
||||
return None, f"Weather API failed: {str(e)}"
|
||||
|
||||
def analyze_mongodb_crash_patterns(crashes, center_lat, center_lon, radius_km, weather_summary=None):
|
||||
"""
|
||||
Analyze crash patterns from MongoDB data and generate safety assessment.
|
||||
"""
|
||||
if not crashes:
|
||||
return "No crash data available for the specified location and radius."
|
||||
|
||||
total_crashes = len(crashes)
|
||||
avg_distance = sum(crash.get('distance_km', 0) for crash in crashes) / total_crashes if crashes else 0
|
||||
|
||||
# Analyze crash patterns from MongoDB structure
|
||||
crash_analysis = {
|
||||
'severity_counts': {},
|
||||
'total_fatalities': 0,
|
||||
'total_major_injuries': 0,
|
||||
'total_minor_injuries': 0,
|
||||
'speeding_involved': 0,
|
||||
'impaired_involved': 0,
|
||||
'pedestrian_crashes': 0,
|
||||
'bicyclist_crashes': 0,
|
||||
'vehicle_counts': {}
|
||||
}
|
||||
|
||||
# Analyze each crash
|
||||
for crash in crashes:
|
||||
# Severity analysis
|
||||
severity = crash.get('severity', 'Unknown')
|
||||
crash_analysis['severity_counts'][severity] = crash_analysis['severity_counts'].get(severity, 0) + 1
|
||||
|
||||
# Casualty analysis
|
||||
casualties = crash.get('casualties', {})
|
||||
|
||||
# Count fatalities and injuries across all categories
|
||||
for category in ['bicyclists', 'drivers', 'pedestrians', 'passengers']:
|
||||
if category in casualties:
|
||||
crash_analysis['total_fatalities'] += casualties[category].get('fatal', 0)
|
||||
crash_analysis['total_major_injuries'] += casualties[category].get('major_injuries', 0)
|
||||
crash_analysis['total_minor_injuries'] += casualties[category].get('minor_injuries', 0)
|
||||
|
||||
# Count vulnerable road user involvement
|
||||
if casualties.get('pedestrians', {}).get('total', 0) > 0:
|
||||
crash_analysis['pedestrian_crashes'] += 1
|
||||
if casualties.get('bicyclists', {}).get('total', 0) > 0:
|
||||
crash_analysis['bicyclist_crashes'] += 1
|
||||
|
||||
# Circumstances analysis
|
||||
circumstances = crash.get('circumstances', {})
|
||||
if circumstances.get('speeding_involved', False):
|
||||
crash_analysis['speeding_involved'] += 1
|
||||
|
||||
# Check for impairment
|
||||
if (circumstances.get('pedestrians_impaired', False) or
|
||||
circumstances.get('bicyclists_impaired', False) or
|
||||
circumstances.get('drivers_impaired', False)):
|
||||
crash_analysis['impaired_involved'] += 1
|
||||
|
||||
# Vehicle analysis
|
||||
vehicles = crash.get('vehicles', {})
|
||||
total_vehicles = vehicles.get('total', 0)
|
||||
crash_analysis['vehicle_counts'][str(total_vehicles)] = crash_analysis['vehicle_counts'].get(str(total_vehicles), 0) + 1
|
||||
|
||||
# Create comprehensive summary for LLM
|
||||
crash_summary = f"""
|
||||
SEVERITY BREAKDOWN: {dict(crash_analysis['severity_counts'])}
|
||||
CASUALTIES:
|
||||
- Fatal injuries: {crash_analysis['total_fatalities']}
|
||||
- Major injuries: {crash_analysis['total_major_injuries']}
|
||||
- Minor injuries: {crash_analysis['total_minor_injuries']}
|
||||
VULNERABLE ROAD USERS:
|
||||
- Crashes involving pedestrians: {crash_analysis['pedestrian_crashes']}
|
||||
- Crashes involving bicyclists: {crash_analysis['bicyclist_crashes']}
|
||||
RISK FACTORS:
|
||||
- Crashes involving speeding: {crash_analysis['speeding_involved']}
|
||||
- Crashes with impairment: {crash_analysis['impaired_involved']}
|
||||
VEHICLE INVOLVEMENT: {dict(crash_analysis['vehicle_counts'])}"""
|
||||
|
||||
# Add current weather information if available
|
||||
weather_info = ""
|
||||
if weather_summary:
|
||||
weather_info = f"""
|
||||
|
||||
CURRENT WEATHER CONDITIONS:
|
||||
{weather_summary}"""
|
||||
|
||||
# Create prompt for LLM
|
||||
prompt = f"""You are a traffic safety expert analyzing recent crash data (2020 onward) and current conditions for location ({center_lat:.6f}, {center_lon:.6f}) within a {radius_km}km radius.
|
||||
|
||||
CRASH STATISTICS (2020-Present):
|
||||
- Total crashes in area: {total_crashes}
|
||||
- Average distance from center: {avg_distance:.2f} km
|
||||
- Search area: {radius_km}km radius (approximately {3.14159 * radius_km**2:.1f} km²)
|
||||
|
||||
DETAILED CRASH ANALYSIS:{crash_summary}{weather_info}
|
||||
|
||||
Based on this comprehensive recent MongoDB crash data (2020 onward), provide:
|
||||
1. A danger level assessment (Low, Moderate, High, Very High)
|
||||
2. Key safety concerns based on recent crash patterns AND current weather conditions
|
||||
3. Specific recommendations for someone traveling to this location RIGHT NOW
|
||||
4. Notable patterns in recent crash data (severity, vulnerable users, risk factors)
|
||||
5. How current weather conditions may affect driving safety
|
||||
|
||||
Focus on practical, actionable safety advice based on recent trends. Be specific about identified risks and provide clear recommendations."""
|
||||
|
||||
try:
|
||||
response = llm.invoke(prompt)
|
||||
return response.content
|
||||
except Exception as e:
|
||||
return f"Error analyzing crash data with LLM: {e}"
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main function to analyze crash danger using MongoDB geospatial queries.
|
||||
"""
|
||||
print("🚗 MongoDB Traffic Crash Danger Analysis Tool (2020+ Data)")
|
||||
print("=" * 65)
|
||||
|
||||
# Connect to MongoDB
|
||||
collection = connect_to_mongodb()
|
||||
if collection is None:
|
||||
print("❌ Could not connect to MongoDB. Exiting...")
|
||||
return
|
||||
|
||||
# Get user input for location and radius
|
||||
try:
|
||||
center_lat = float(input("Enter latitude: "))
|
||||
center_lon = float(input("Enter longitude: "))
|
||||
radius_km = float(input("Enter search radius in kilometers (default: 1.0): ") or "1.0")
|
||||
|
||||
print(f"\n🔍 Analyzing recent crashes (2020+) within {radius_km}km of ({center_lat:.6f}, {center_lon:.6f})...")
|
||||
|
||||
# Query MongoDB for nearby crashes using geospatial indexing
|
||||
nearby_crashes = get_crashes_within_radius_mongodb(collection, center_lat, center_lon, radius_km)
|
||||
|
||||
if len(nearby_crashes) > 0:
|
||||
print(f"🔴 Closest crash: {nearby_crashes[0]['distance_km']:.3f}km away")
|
||||
print(f"🔴 Furthest crash: {nearby_crashes[-1]['distance_km']:.3f}km away")
|
||||
|
||||
# Display sample crash details from MongoDB structure
|
||||
print("📊 Sample crash details from MongoDB:")
|
||||
sample = nearby_crashes[0]
|
||||
print(f" - ID: {sample.get('crashId', 'N/A')}")
|
||||
print(f" - Severity: {sample.get('severity', 'N/A')}")
|
||||
print(f" - Address: {sample.get('address', 'N/A')}")
|
||||
print(f" - Ward: {sample.get('ward', 'N/A')}")
|
||||
|
||||
casualties = sample.get('casualties', {})
|
||||
total_casualties = 0
|
||||
for cat in ['bicyclists', 'drivers', 'pedestrians', 'passengers']:
|
||||
cat_data = casualties.get(cat, {})
|
||||
total_casualties += (cat_data.get('fatal', 0) +
|
||||
cat_data.get('major_injuries', 0) +
|
||||
cat_data.get('minor_injuries', 0))
|
||||
print(f" - Total casualties: {total_casualties}")
|
||||
else:
|
||||
print("ℹ️ No crashes found within the specified radius.")
|
||||
|
||||
# Get current weather conditions
|
||||
print("\n🌤️ Fetching current weather conditions...")
|
||||
weather_data, weather_summary = get_current_weather(center_lat, center_lon)
|
||||
|
||||
if weather_data is None:
|
||||
print(f"⚠️ Weather data unavailable: {weather_summary}")
|
||||
weather_summary = None
|
||||
else:
|
||||
print(f"🌤️ Current conditions: {weather_summary}")
|
||||
|
||||
# Generate comprehensive safety analysis using LLM
|
||||
print("\n🤖 Generating comprehensive safety assessment...")
|
||||
analysis = analyze_mongodb_crash_patterns(nearby_crashes, center_lat, center_lon, radius_km, weather_summary)
|
||||
|
||||
print("\n" + "="*65)
|
||||
print("🚨 RECENT CRASH SAFETY ASSESSMENT REPORT (2020-Present)")
|
||||
print("="*65)
|
||||
print(analysis)
|
||||
|
||||
except ValueError:
|
||||
print("❌ Please enter valid numerical values for coordinates and radius.")
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Analysis cancelled by user.")
|
||||
except Exception as e:
|
||||
print(f"❌ An error occurred: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user