shortest path for rerouting
This commit is contained in:
@@ -7,8 +7,10 @@ Provides:
|
||||
Never hardcode API keys in source. Provide via api_key argument or set OPENWEATHER_API_KEY / OPENWEATHER_KEY env var.
|
||||
"""
|
||||
import os
|
||||
from typing import Tuple, Dict, Any, Optional
|
||||
from typing import Tuple, Dict, Any, Optional, Callable, List
|
||||
import requests
|
||||
import heapq
|
||||
import math
|
||||
|
||||
def _get_api_key(explicit_key: Optional[str] = None) -> Optional[str]:
|
||||
if explicit_key:
|
||||
@@ -115,3 +117,226 @@ def fetch_road_risk(lat: float, lon: float, extra_params: Optional[dict] = None,
|
||||
|
||||
features["road_risk_score"] = float(risk)
|
||||
return data, features
|
||||
|
||||
|
||||
def _haversine_km(a_lat: float, a_lon: float, b_lat: float, b_lon: float) -> float:
|
||||
# returns distance in kilometers
|
||||
R = 6371.0
|
||||
lat1, lon1, lat2, lon2 = map(math.radians, (a_lat, a_lon, b_lat, b_lon))
|
||||
dlat = lat2 - lat1
|
||||
dlon = lon2 - lon1
|
||||
h = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
|
||||
return 2 * R * math.asin(min(1.0, math.sqrt(h)))
|
||||
|
||||
|
||||
def risk_to_index(risk_score: float, max_risk: float = 10.0, num_bins: int = 10) -> int:
|
||||
"""
|
||||
Map a numeric risk_score to an integer index 1..num_bins (higher => more risky).
|
||||
Uses equal-width bins: 0..(max_risk/num_bins) -> 1, ..., >=max_risk -> num_bins.
|
||||
"""
|
||||
if risk_score is None:
|
||||
return 1
|
||||
r = float(risk_score)
|
||||
if r <= 0:
|
||||
return 1
|
||||
if r >= max_risk:
|
||||
return num_bins
|
||||
bin_width = max_risk / float(num_bins)
|
||||
return int(r // bin_width) + 1
|
||||
|
||||
|
||||
def get_risk_score(lat: float, lon: float, **fetch_kwargs) -> float:
|
||||
"""
|
||||
Wrapper: calls fetch_road_risk and returns features['road_risk_score'] (float).
|
||||
Pass api_key/roadrisk_url via fetch_kwargs as needed.
|
||||
"""
|
||||
_, features = fetch_road_risk(lat, lon, **fetch_kwargs)
|
||||
return float(features.get("road_risk_score", 0.0))
|
||||
|
||||
|
||||
def compute_reroute(start_lat: float,
|
||||
start_lon: float,
|
||||
risk_provider: Callable[[float, float], float] = None,
|
||||
lat_range: float = 0.005,
|
||||
lon_range: float = 0.01,
|
||||
n_lat: int = 7,
|
||||
n_lon: int = 7,
|
||||
max_calls: Optional[int] = None,
|
||||
distance_weight: float = 0.1) -> Dict[str, Any]:
|
||||
"""
|
||||
Sample a grid around (start_lat, start_lon), get risk at each grid node via risk_provider,
|
||||
find the node with minimum risk, and run Dijkstra on the grid (4-neighbors) where edge cost =
|
||||
average node risk + distance_weight * distance_km. Returns path and stats.
|
||||
|
||||
Defaults: n_lat/n_lon small to limit API calls. max_calls optionally caps number of risk_provider calls.
|
||||
"""
|
||||
if risk_provider is None:
|
||||
# default risk provider that calls fetch_road_risk (may require API key in env or fetch_kwargs)
|
||||
def _rp(lat, lon): return get_risk_score(lat, lon)
|
||||
risk_provider = _rp
|
||||
|
||||
# build grid coordinates
|
||||
lat_steps = n_lat
|
||||
lon_steps = n_lon
|
||||
if lat_steps < 2 or lon_steps < 2:
|
||||
raise ValueError("n_lat and n_lon must be >= 2")
|
||||
lat0 = start_lat - lat_range
|
||||
lon0 = start_lon - lon_range
|
||||
lat_step = (2 * lat_range) / (lat_steps - 1)
|
||||
lon_step = (2 * lon_range) / (lon_steps - 1)
|
||||
|
||||
coords: List[Tuple[float, float]] = []
|
||||
for i in range(lat_steps):
|
||||
for j in range(lon_steps):
|
||||
coords.append((lat0 + i * lat_step, lon0 + j * lon_step))
|
||||
|
||||
# sample risks with caching and optional call limit
|
||||
risks: List[float] = []
|
||||
calls = 0
|
||||
for (lat, lon) in coords:
|
||||
if max_calls is not None and calls >= max_calls:
|
||||
# conservative fallback: assume same as start risk if call limit reached
|
||||
risks.append(float('inf'))
|
||||
continue
|
||||
try:
|
||||
r = float(risk_provider(lat, lon))
|
||||
except Exception:
|
||||
r = float('inf')
|
||||
risks.append(r)
|
||||
calls += 1
|
||||
|
||||
# convert to grid indexed by (i,j)
|
||||
def idx(i, j): return i * lon_steps + j
|
||||
# find start index (closest grid node to start)
|
||||
start_i = round((start_lat - lat0) / lat_step)
|
||||
start_j = round((start_lon - lon0) / lon_step)
|
||||
start_i = max(0, min(lat_steps - 1, start_i))
|
||||
start_j = max(0, min(lon_steps - 1, start_j))
|
||||
start_index = idx(start_i, start_j)
|
||||
|
||||
# find target node = min risk node (ignore inf)
|
||||
min_risk = min(risks)
|
||||
if math.isinf(min_risk) or min_risk >= risks[start_index]:
|
||||
# no better location found or sampling failed
|
||||
return {
|
||||
"reroute_needed": False,
|
||||
"reason": "no_lower_risk_found",
|
||||
"start_coord": (start_lat, start_lon),
|
||||
"start_risk": None if math.isinf(risks[start_index]) else risks[start_index],
|
||||
}
|
||||
|
||||
target_index = int(risks.index(min_risk))
|
||||
|
||||
# Dijkstra from start_index to target_index
|
||||
N = len(coords)
|
||||
dist = [math.inf] * N
|
||||
prev = [None] * N
|
||||
dist[start_index] = 0.0
|
||||
pq = [(0.0, start_index)]
|
||||
while pq:
|
||||
d, u = heapq.heappop(pq)
|
||||
if d > dist[u]:
|
||||
continue
|
||||
if u == target_index:
|
||||
break
|
||||
ui = u // lon_steps
|
||||
uj = u % lon_steps
|
||||
for di, dj in ((1,0),(-1,0),(0,1),(0,-1)):
|
||||
vi, vj = ui + di, uj + dj
|
||||
if 0 <= vi < lat_steps and 0 <= vj < lon_steps:
|
||||
v = idx(vi, vj)
|
||||
# cost: average node risk + small distance penalty
|
||||
ru = risks[u]
|
||||
rv = risks[v]
|
||||
if math.isinf(ru) or math.isinf(rv):
|
||||
continue
|
||||
lat_u, lon_u = coords[u]
|
||||
lat_v, lon_v = coords[v]
|
||||
d_km = _haversine_km(lat_u, lon_u, lat_v, lon_v)
|
||||
w = (ru + rv) / 2.0 + distance_weight * d_km
|
||||
nd = d + w
|
||||
if nd < dist[v]:
|
||||
dist[v] = nd
|
||||
prev[v] = u
|
||||
heapq.heappush(pq, (nd, v))
|
||||
|
||||
if math.isinf(dist[target_index]):
|
||||
return {
|
||||
"reroute_needed": False,
|
||||
"reason": "no_path_found",
|
||||
"start_coord": (start_lat, start_lon),
|
||||
"start_risk": risks[start_index],
|
||||
"target_risk": risks[target_index],
|
||||
}
|
||||
|
||||
# reconstruct path
|
||||
path_indices = []
|
||||
cur = target_index
|
||||
while cur is not None:
|
||||
path_indices.append(cur)
|
||||
cur = prev[cur]
|
||||
path_indices.reverse()
|
||||
path_coords = [coords[k] for k in path_indices]
|
||||
start_risk = risks[start_index]
|
||||
end_risk = risks[target_index]
|
||||
improvement = (start_risk - end_risk) if start_risk not in (None, float('inf')) else None
|
||||
|
||||
return {
|
||||
"reroute_needed": True,
|
||||
"start_coord": (start_lat, start_lon),
|
||||
"start_risk": start_risk,
|
||||
"target_coord": coords[target_index],
|
||||
"target_risk": end_risk,
|
||||
"path": path_coords,
|
||||
"path_cost": dist[target_index],
|
||||
"risk_improvement": improvement,
|
||||
"grid_shape": (lat_steps, lon_steps),
|
||||
"calls_made": calls,
|
||||
}
|
||||
|
||||
|
||||
def compute_index_and_reroute(lat: float,
|
||||
lon: float,
|
||||
api_key: Optional[str] = None,
|
||||
roadrisk_url: Optional[str] = None,
|
||||
max_risk: float = 10.0,
|
||||
num_bins: int = 10,
|
||||
reroute_kwargs: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
||||
"""
|
||||
High-level convenience: get road risk, map to index (1..num_bins), and attempt reroute.
|
||||
reroute_kwargs are forwarded to compute_reroute (risk_provider will call fetch_road_risk
|
||||
using provided api_key/roadrisk_url).
|
||||
"""
|
||||
if reroute_kwargs is None:
|
||||
reroute_kwargs = {}
|
||||
|
||||
# obtain base risk
|
||||
data, features = fetch_road_risk(lat, lon, api_key=api_key, roadrisk_url=roadrisk_url)
|
||||
road_risk = float(features.get("road_risk_score", 0.0))
|
||||
|
||||
# compute index: if 'accidents' present in features, prefer that mapping
|
||||
accidents = features.get("accidents") or features.get("accident_count")
|
||||
try:
|
||||
if accidents is not None:
|
||||
# map raw accident count to index 1..num_bins
|
||||
from .models import accidents_to_bucket
|
||||
idx = accidents_to_bucket(int(accidents), max_count=20000, num_bins=num_bins)
|
||||
else:
|
||||
idx = risk_to_index(road_risk, max_risk=max_risk, num_bins=num_bins)
|
||||
except Exception:
|
||||
idx = risk_to_index(road_risk, max_risk=max_risk, num_bins=num_bins)
|
||||
|
||||
# prepare risk_provider that passes api_key/roadrisk_url through
|
||||
def _rp(lat_, lon_):
|
||||
return get_risk_score(lat_, lon_, api_key=api_key, roadrisk_url=roadrisk_url)
|
||||
|
||||
reroute_info = compute_reroute(lat, lon, risk_provider=_rp, **reroute_kwargs)
|
||||
return {
|
||||
"lat": lat,
|
||||
"lon": lon,
|
||||
"index": int(idx),
|
||||
"road_risk_score": road_risk,
|
||||
"features": features,
|
||||
"reroute": reroute_info,
|
||||
"raw_roadrisk_response": data,
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user