from flask import Flask, request, jsonify app = Flask(__name__) import os import threading import json # ML imports are lazy to avoid heavy imports on simple runs @app.route('/get-data', methods=['GET']) def get_data(): # Example GET request handler data = {"message": "Hello from Flask!"} return jsonify(data) @app.route('/post-data', methods=['POST']) def post_data(): # Example POST request handler content = request.json # Process content or call AI model here response = {"you_sent": content} return jsonify(response) @app.route('/train', methods=['POST']) def train_endpoint(): """Trigger training. Expects JSON: {"data_root": "path/to/data", "epochs": 3} Training runs in a background thread and saves model to model.pth in repo root. """ payload = request.json or {} data_root = payload.get('data_root') epochs = int(payload.get('epochs', 3)) if not data_root or not os.path.isdir(data_root): return jsonify({"error": "data_root must be a valid directory path"}), 400 def _run_training(): from train import train train(data_root, epochs=epochs) t = threading.Thread(target=_run_training, daemon=True) t.start() return jsonify({"status": "training_started"}) @app.route('/predict', methods=['POST']) def predict_endpoint(): """Predict single uploaded image. Expects form-data with file field named 'image'.""" if 'image' not in request.files: return jsonify({"error": "no image uploaded (field 'image')"}), 400 img = request.files['image'] tmp_path = os.path.join(os.getcwd(), 'tmp_upload.jpg') img.save(tmp_path) try: from inference import load_model, predict_image model_path = os.path.join(os.getcwd(), 'model.pth') if not os.path.exists(model_path): return jsonify({"error": "no trained model found (run /train first)"}), 400 model, idx_to_class = load_model(model_path) idx, conf = predict_image(model, tmp_path) label = idx_to_class.get(idx) if idx_to_class else str(idx) return jsonify({"label": label, "confidence": conf}) finally: try: os.remove(tmp_path) except Exception: pass @app.route('/predict-roadrisk', methods=['POST']) def predict_roadrisk(): """Proxy endpoint to predict a roadrisk cluster from lat/lon/datetime. Expects JSON body with: {"lat": 38.9, "lon": -77.0, "datetime": "2025-09-27T12:00:00", "roadrisk_url": "https://..."} If roadrisk_url is not provided the endpoint will call OpenWeather OneCall (requires API key via OPENWEATHER_KEY env var). """ payload = request.json or {} lat = payload.get('lat') lon = payload.get('lon') dt = payload.get('datetime') street = payload.get('street', '') roadrisk_url = payload.get('roadrisk_url') # prefer explicit api_key in request, otherwise read from OPENWEATHER_API_KEY env var api_key = payload.get('api_key') or os.environ.get('OPENWEATHER_API_KEY') if lat is None or lon is None: return jsonify({"error": "lat and lon are required fields"}), 400 try: from openweather_inference import predict_from_openweather # pass api_key (may be None) to the inference helper; helper will raise if a key is required res = predict_from_openweather( lat, lon, dt_iso=dt, street=street, api_key=api_key, train_csv=os.path.join(os.getcwd(), 'data.csv'), preprocess_meta=None, model_path=os.path.join(os.getcwd(), 'model.pth'), centers_path=os.path.join(os.getcwd(), 'kmeans_centers_all.npz'), roadrisk_url=roadrisk_url ) return jsonify(res) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/health', methods=['GET']) def health(): """Return status of loaded ML artifacts (model, centers, preprocess_meta).""" try: from openweather_inference import init_inference status = init_inference() return jsonify({'ok': True, 'artifacts': status}) except Exception as e: return jsonify({'ok': False, 'error': str(e)}), 500 if __name__ == '__main__': # eager load model/artifacts at startup (best-effort) try: from openweather_inference import init_inference init_inference() except Exception: pass app.run(debug=True) # @app.route('/post-data', methods=['POST']) # def post_data(): # content = request.json # user_input = content.get('input') # # Example: Simple echo AI (replace with real AI model code) # ai_response = f"AI received: {user_input}" # return jsonify({"response": ai_response})