124 lines
4.4 KiB
Python
124 lines
4.4 KiB
Python
from flask import Flask, request, jsonify
|
|
|
|
app = Flask(__name__)
|
|
import os
|
|
import threading
|
|
import json
|
|
|
|
# ML imports are lazy to avoid heavy imports on simple runs
|
|
|
|
|
|
@app.route('/get-data', methods=['GET'])
|
|
def get_data():
|
|
# Example GET request handler
|
|
data = {"message": "Hello from Flask!"}
|
|
return jsonify(data)
|
|
|
|
@app.route('/post-data', methods=['POST'])
|
|
def post_data():
|
|
# Example POST request handler
|
|
content = request.json
|
|
# Process content or call AI model here
|
|
response = {"you_sent": content}
|
|
return jsonify(response)
|
|
|
|
|
|
@app.route('/train', methods=['POST'])
|
|
def train_endpoint():
|
|
"""Trigger training. Expects JSON: {"data_root": "path/to/data", "epochs": 3}
|
|
Training runs in a background thread and saves model to model.pth in repo root.
|
|
"""
|
|
payload = request.json or {}
|
|
data_root = payload.get('data_root')
|
|
epochs = int(payload.get('epochs', 3))
|
|
if not data_root or not os.path.isdir(data_root):
|
|
return jsonify({"error": "data_root must be a valid directory path"}), 400
|
|
|
|
def _run_training():
|
|
from train import train
|
|
train(data_root, epochs=epochs)
|
|
|
|
t = threading.Thread(target=_run_training, daemon=True)
|
|
t.start()
|
|
return jsonify({"status": "training_started"})
|
|
|
|
|
|
@app.route('/predict', methods=['POST'])
|
|
def predict_endpoint():
|
|
"""Predict single uploaded image. Expects form-data with file field named 'image'."""
|
|
if 'image' not in request.files:
|
|
return jsonify({"error": "no image uploaded (field 'image')"}), 400
|
|
img = request.files['image']
|
|
tmp_path = os.path.join(os.getcwd(), 'tmp_upload.jpg')
|
|
img.save(tmp_path)
|
|
try:
|
|
from inference import load_model, predict_image
|
|
model_path = os.path.join(os.getcwd(), 'model.pth')
|
|
if not os.path.exists(model_path):
|
|
return jsonify({"error": "no trained model found (run /train first)"}), 400
|
|
model, idx_to_class = load_model(model_path)
|
|
idx, conf = predict_image(model, tmp_path)
|
|
label = idx_to_class.get(idx) if idx_to_class else str(idx)
|
|
return jsonify({"label": label, "confidence": conf})
|
|
finally:
|
|
try:
|
|
os.remove(tmp_path)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
@app.route('/predict-roadrisk', methods=['POST'])
|
|
def predict_roadrisk():
|
|
"""Proxy endpoint to predict a roadrisk cluster from lat/lon/datetime.
|
|
|
|
Expects JSON body with: {"lat": 38.9, "lon": -77.0, "datetime": "2025-09-27T12:00:00", "roadrisk_url": "https://..."}
|
|
If roadrisk_url is not provided the endpoint will call OpenWeather OneCall (requires API key via OPENWEATHER_KEY env var).
|
|
"""
|
|
payload = request.json or {}
|
|
lat = payload.get('lat')
|
|
lon = payload.get('lon')
|
|
dt = payload.get('datetime')
|
|
street = payload.get('street', '')
|
|
roadrisk_url = payload.get('roadrisk_url')
|
|
api_key = payload.get('api_key') or os.environ.get('OPENWEATHER_KEY')
|
|
|
|
if lat is None or lon is None:
|
|
return jsonify({"error": "lat and lon are required fields"}), 400
|
|
|
|
try:
|
|
from openweather_inference import predict_from_openweather
|
|
res = predict_from_openweather(lat, lon, dt_iso=dt, street=street, api_key=api_key, train_csv=os.path.join(os.getcwd(), 'data.csv'), preprocess_meta=None, model_path=os.path.join(os.getcwd(), 'model.pth'), centers_path=os.path.join(os.getcwd(), 'kmeans_centers_all.npz'), roadrisk_url=roadrisk_url)
|
|
return jsonify(res)
|
|
except Exception as e:
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
@app.route('/health', methods=['GET'])
|
|
def health():
|
|
"""Return status of loaded ML artifacts (model, centers, preprocess_meta)."""
|
|
try:
|
|
from openweather_inference import init_inference
|
|
status = init_inference()
|
|
return jsonify({'ok': True, 'artifacts': status})
|
|
except Exception as e:
|
|
return jsonify({'ok': False, 'error': str(e)}), 500
|
|
|
|
if __name__ == '__main__':
|
|
# eager load model/artifacts at startup (best-effort)
|
|
try:
|
|
from openweather_inference import init_inference
|
|
init_inference()
|
|
except Exception:
|
|
pass
|
|
app.run(debug=True)
|
|
|
|
# @app.route('/post-data', methods=['POST'])
|
|
# def post_data():
|
|
# content = request.json
|
|
# user_input = content.get('input')
|
|
|
|
# # Example: Simple echo AI (replace with real AI model code)
|
|
# ai_response = f"AI received: {user_input}"
|
|
|
|
# return jsonify({"response": ai_response})
|