Files
VTHacks13/roadcast/train.py
samarthjain2023 4da975110b fixed post request
2025-09-28 04:18:22 -04:00

341 lines
16 KiB
Python

import os
import time
import torch
import json
from torch import nn, optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
from data import ImageFolderDataset, CSVDataset
from models import create_model
def train(dataset_root, epochs=3, batch_size=16, lr=1e-3, device=None, num_classes=10, model_type='mlp', csv_label='label', generate_labels=False, n_buckets=100, label_method='md5', label_store=None, feature_engineer=False, lat_lon_bins=20, nrows=None, seed=42, hidden_dims=None, weight_decay=0.0, output_dir=None):
device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
output_dir = output_dir or os.getcwd()
os.makedirs(output_dir, exist_ok=True)
# Detect CSV vs folder dataset
if os.path.isfile(dataset_root) and dataset_root.lower().endswith('.csv'):
dataset = CSVDataset(dataset_root,
label_column=csv_label,
generate_labels=generate_labels,
n_buckets=n_buckets,
label_method=label_method,
label_store=label_store,
feature_engineer=feature_engineer,
lat_lon_bins=lat_lon_bins,
nrows=nrows)
# seed numpy/torch RNGs for reproducibility in experiments
try:
import numpy as _np
_np.random.seed(seed)
except Exception:
pass
try:
import random as _py_random
_py_random.seed(seed)
except Exception:
pass
try:
import torch as _torch
_torch.manual_seed(seed)
if _torch.cuda.is_available():
_torch.cuda.manual_seed_all(seed)
except Exception:
pass
# determine input dim for MLP
input_dim = dataset.features.shape[1]
# persist preprocessing metadata so inference can reuse identical stats
try:
import numpy as _np
meta_path = os.path.join(output_dir, 'preprocess_meta.npz')
_np.savez_compressed(meta_path, feature_columns=_np.array(dataset.feature_columns, dtype=object), means=dataset.feature_means, stds=dataset.feature_stds)
print(f'Saved preprocess meta to {meta_path}')
except Exception:
pass
# ensure model_num_classes has a defined value for later use
model_num_classes = None
# ---- new: generate kmeans labels when requested ----
if generate_labels and label_method == 'kmeans':
try:
import numpy as _np
# ensure features is numpy 2D array
X = dataset.features
if hasattr(X, 'toarray'):
X = X.toarray()
X = _np.asarray(X, dtype=float)
# basic preprocessing: fill NaN and scale (mean/std)
nan_mask = _np.isnan(X)
if nan_mask.any():
col_means = _np.nanmean(X, axis=0)
inds = _np.where(nan_mask)
X[inds] = _np.take(col_means, inds[1])
# standardize
col_means = X.mean(axis=0)
col_stds = X.std(axis=0)
col_stds[col_stds == 0] = 1.0
Xs = (X - col_means) / col_stds
# use sklearn KMeans
try:
from sklearn.cluster import KMeans
except Exception as e:
raise RuntimeError("sklearn is required for kmeans label generation: " + str(e))
n_clusters = 10 # produce 1..10 labels as required
kmeans = KMeans(n_clusters=n_clusters, random_state=seed, n_init=10)
cluster_ids = kmeans.fit_predict(Xs)
# compute a simple score per cluster to sort them (e.g., center mean)
centers = kmeans.cluster_centers_
center_scores = centers.mean(axis=1)
# sort cluster ids by score -> map to rank 1..n_clusters (1 = lowest score)
order = _np.argsort(center_scores)
rank_map = {int(c): (int(_np.where(order == c)[0][0]) + 1) for c in range(len(order))}
# assign labels 1..10 based on cluster rank
assigned_labels_1to10 = [_np.float64(rank_map[int(cid)]) for cid in cluster_ids]
# for training (classification) convert to 0..9 integer labels
assigned_labels_zero_based = _np.array([int(lbl) - 1 for lbl in assigned_labels_1to10], dtype=int)
# attach to dataset (CSVDataset consumers expect .labels possibly)
try:
import torch as _torch
dataset.labels = _torch.from_numpy(assigned_labels_zero_based).long()
except Exception:
# fallback to numpy attribute
dataset.labels = assigned_labels_zero_based
# persist label_info / assignments
label_info = {
"generated": True,
"label_method": "kmeans",
"n_clusters": n_clusters,
}
try:
# save assignments if small enough
if len(assigned_labels_1to10) <= 100000:
label_info["assignments"] = [float(x) for x in assigned_labels_1to10]
else:
arr_path = os.path.join(output_dir, "label_assignments.npz")
_np.savez_compressed(arr_path, assignments=_np.array(assigned_labels_1to10))
label_info["assignments_file"] = os.path.basename(arr_path)
with open(os.path.join(output_dir, "label_info.json"), "w") as f:
json.dump(label_info, f)
except Exception:
pass
# update model_num_classes for training (10 clusters)
model_num_classes = n_clusters
print(f"Generated kmeans labels with {n_clusters} clusters; saved label_info.json")
except Exception as e:
print("KMeans label generation failed:", e)
# fall back to prior logic (md5 or provided labels)
# ---- end kmeans generation ----
if model_type == 'cnn':
raise ValueError('CSV dataset should use model_type="mlp"')
# determine model_num_classes if not set by kmeans above
if model_num_classes is None:
# if we generated labels (non-kmeans) and dataset provides labels, infer number of classes
if generate_labels and hasattr(dataset, 'labels') and label_method != 'kmeans':
try:
model_num_classes = int(dataset.labels.max().item()) + 1
except Exception:
model_num_classes = n_buckets
else:
# default behavior
model_num_classes = n_buckets if generate_labels else num_classes
# If labels were generated, save label metadata + assignments (if not huge)
if generate_labels and label_method != 'kmeans':
try:
label_info = {
"generated": True,
"label_method": label_method,
"n_buckets": n_buckets,
}
# save per-sample assignments if dataset exposes them
if hasattr(dataset, "labels"):
try:
# convert to list (JSON serializable)
assignments = dataset.labels.cpu().numpy().tolist() if hasattr(dataset.labels, "cpu") else dataset.labels.tolist()
# if too large, save as .npz instead
if len(assignments) <= 100000:
label_info["assignments"] = assignments
else:
import numpy as _np
arr_path = os.path.join(output_dir, "label_assignments.npz")
_np.savez_compressed(arr_path, assignments=_np.array(assignments))
label_info["assignments_file"] = os.path.basename(arr_path)
except Exception:
pass
with open(os.path.join(output_dir, "label_info.json"), "w") as f:
json.dump(label_info, f)
print(f"Saved label_info to {os.path.join(output_dir, 'label_info.json')}")
except Exception:
pass
# parse hidden_dims if provided by caller (tuple or list)
model = create_model(device=device, model_type='mlp', input_dim=input_dim, num_classes=model_num_classes, hidden_dims=hidden_dims)
else:
# assume folder of images
dataset = ImageFolderDataset(dataset_root)
model = create_model(device=device, model_type='cnn', input_size=(3, 224, 224), num_classes=num_classes)
# simple train/val split
val_size = max(1, int(0.1 * len(dataset)))
train_size = len(dataset) - val_size
train_set, val_set = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
best_val_acc = 0.0
best_path = None
for epoch in range(epochs):
model.train()
running_loss = 0.0
pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}")
for xb, yb in pbar:
xb = xb.to(device)
yb = yb.to(device)
optimizer.zero_grad()
outputs = model(xb)
loss = criterion(outputs, yb)
loss.backward()
optimizer.step()
running_loss += loss.item()
pbar.set_postfix(loss=running_loss / (pbar.n + 1))
# validation
model.eval()
correct = 0
total = 0
with torch.no_grad():
for xb, yb in val_loader:
xb = xb.to(device)
yb = yb.to(device)
outputs = model(xb)
preds = outputs.argmax(dim=1)
correct += (preds == yb).sum().item()
total += yb.size(0)
val_acc = correct / total if total > 0 else 0.0
print(f"Epoch {epoch+1} val_acc={val_acc:.4f}")
# save best
if val_acc > best_val_acc:
out_path = os.path.join(output_dir, 'model.pth')
# include useful metadata so evaluator can reconstruct
meta = {
'model_state_dict': model.state_dict(),
'model_type': model_type,
'model_config': {
'input_dim': input_dim if model_type == 'mlp' else None,
'num_classes': model_num_classes,
'hidden_dims': hidden_dims,
}
}
if hasattr(dataset, 'class_to_idx'):
meta['class_to_idx'] = dataset.class_to_idx
# also record paths to saved preprocess and label info (if present)
meta['preprocess_meta'] = os.path.basename(os.path.join(output_dir, 'preprocess_meta.npz'))
if os.path.exists(os.path.join(output_dir, 'label_info.json')):
meta['label_info'] = json.load(open(os.path.join(output_dir, 'label_info.json'), 'r'))
torch.save(meta, out_path)
best_val_acc = val_acc
best_path = out_path
print(f"Saved best model to {out_path} (val_acc={val_acc:.4f})")
return best_path
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('data_root')
parser.add_argument('--epochs', type=int, default=3)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--model-type', choices=['cnn', 'mlp'], default='cnn')
parser.add_argument('--csv-label', default='label')
parser.add_argument('--generate-labels', action='store_true', help='If set, generate labels from columns instead of expecting label column')
parser.add_argument('--n-buckets', type=int, default=100, help='Number of label buckets when generating labels')
parser.add_argument('--label-method', choices=['md5', 'kmeans'], default='md5', help='Method to generate labels when --generate-labels is set')
parser.add_argument('--label-store', default=None, help='Path to save/load label metadata (e.g., kmeans centers .npz)')
parser.add_argument('--subset', type=int, default=0, help='If set (>0), load only first N rows from CSV for fast experiments')
parser.add_argument('--feature-engineer', action='store_true', help='If set, add simple date and lat/lon engineered features')
parser.add_argument('--lat-lon-bins', type=int, default=20, help='Number of bins for lat/lon coarse spatial features')
parser.add_argument('--seed', type=int, default=42, help='Random seed for experiments')
parser.add_argument('--hidden-dims', type=str, default='', help='Comma-separated hidden dims for MLP, e.g. "256,128"')
parser.add_argument('--weight-decay', type=float, default=0.0, help='Weight decay (L2) for optimizer')
parser.add_argument('--output-dir', default='.', help='Directory to save output files')
args = parser.parse_args()
data_root = args.data_root
nrows = args.subset if args.subset > 0 else None
# parse hidden dims
hidden_dims = None
if args.hidden_dims:
try:
hidden_dims = tuple(int(x) for x in args.hidden_dims.split(',') if x.strip())
except Exception:
hidden_dims = None
if args.generate_labels:
os.makedirs(args.output_dir, exist_ok=True)
label_info = {
"generated": True,
"label_method": args.label_method,
"n_buckets": args.n_buckets,
}
with open(os.path.join(args.output_dir, "label_info.json"), "w") as f:
json.dump(label_info, f)
train(data_root, epochs=args.epochs, batch_size=args.batch_size, lr=args.lr, model_type=args.model_type, csv_label=args.csv_label, generate_labels=args.generate_labels, n_buckets=args.n_buckets, label_method=args.label_method, label_store=args.label_store, feature_engineer=args.feature_engineer, lat_lon_bins=args.lat_lon_bins, nrows=nrows, seed=args.seed, hidden_dims=hidden_dims, weight_decay=args.weight_decay, output_dir=args.output_dir)
# ---------------- new helper ----------------
def compute_index(model, feature_vector):
"""
Run model on a single feature_vector and return the model-provided index as float.
- If model is a classifier (outputs logits), returns argmax + 1.0 (so labels 1..C).
- If model returns a single scalar regression, returns that scalar as float.
feature_vector may be numpy array or torch tensor (1D or 2D single sample).
"""
try:
import torch
model.eval()
if not isinstance(feature_vector, torch.Tensor):
fv = torch.tensor(feature_vector, dtype=torch.float32)
else:
fv = feature_vector.float()
# ensure batch dim
if fv.dim() == 1:
fv = fv.unsqueeze(0)
with torch.no_grad():
out = model(fv)
# if tensor output
if hasattr(out, 'detach'):
out_t = out.detach().cpu()
if out_t.ndim == 2 and out_t.shape[1] > 1:
# classifier logits/probs -> argmax
idx = int(out_t.argmax(dim=1).item())
return float(idx + 1)
elif out_t.numel() == 1:
return float(out_t.item())
else:
# fallback: return first element
return float(out_t.flatten()[0].item())
else:
# not a tensor (unlikely), try float conversion
return float(out)
except Exception as e:
raise RuntimeError("compute_index failed: " + str(e))
return float(out)
except Exception as e:
raise RuntimeError("compute_index failed: " + str(e))