Files
VTHacks13/llm/flask_server.py

471 lines
18 KiB
Python

from flask import Flask, request, jsonify
from flask_cors import CORS
import sys
import os
import re
import traceback
from datetime import datetime
import json
from bson import ObjectId
# Ensure repo root is on sys.path so local imports work whether this script
# is run from the repo root or from inside the `llm/` folder.
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
# Import our existing modules from the same llm directory
try:
# These modules live in the `llm/` folder (not `llm/api/`), so import them
# as local modules when running this script directly.
from gemini_mongo_mateo import (
connect_to_mongodb,
get_crashes_within_radius_mongodb,
analyze_mongodb_crash_patterns,
get_current_weather,
)
from gemini_reroute_mateo import SafeRouteAnalyzer, MONGO_URI
print("✅ Successfully imported Python modules")
except ImportError as e:
print(f"❌ Failed to import modules: {e}")
traceback.print_exc()
sys.exit(1)
def serialize_mongodb_doc(doc):
"""Convert MongoDB document to JSON-serializable format"""
if doc is None:
return None
if isinstance(doc, list):
return [serialize_mongodb_doc(item) for item in doc]
if isinstance(doc, dict):
serialized = {}
for key, value in doc.items():
if isinstance(value, ObjectId):
serialized[key] = str(value)
elif isinstance(value, dict):
serialized[key] = serialize_mongodb_doc(value)
elif isinstance(value, list):
serialized[key] = serialize_mongodb_doc(value)
else:
serialized[key] = value
return serialized
return doc
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Initialize the route analyzer
route_analyzer = SafeRouteAnalyzer(MONGO_URI)
# Initialize MongoDB connection for crash analysis
mongo_collection = connect_to_mongodb()
@app.route('/api/health', methods=['GET'])
def health_check():
"""Health check endpoint to verify API is running."""
return jsonify({
'status': 'healthy',
'timestamp': datetime.now().isoformat(),
'mongodb_connected': mongo_collection is not None,
'route_analyzer_ready': route_analyzer.collection is not None
})
@app.route('/api/weather', methods=['GET'])
def get_weather_endpoint():
"""Get current weather conditions for given coordinates."""
try:
lat = float(request.args.get('lat'))
lon = float(request.args.get('lon'))
weather_data, weather_summary = get_current_weather(lat, lon)
if weather_data is None:
return jsonify({
'success': False,
'error': weather_summary
}), 400
return jsonify({
'success': True,
'weather_data': weather_data,
'summary': weather_summary,
'coordinates': {'lat': lat, 'lon': lon}
})
except (TypeError, ValueError) as e:
return jsonify({
'success': False,
'error': 'Invalid latitude or longitude provided'
}), 400
except Exception as e:
return jsonify({
'success': False,
'error': str(e)
}), 500
@app.route('/api/analyze-crashes', methods=['POST'])
def analyze_crashes_endpoint():
"""Analyze crash patterns and safety for a specific location."""
try:
if mongo_collection is None:
return jsonify({
'success': False,
'error': 'Database connection not available'
}), 500
# More robust JSON parsing
data = request.get_json(force=True)
if not data:
return jsonify({
'success': False,
'error': 'No valid JSON data provided'
}), 400
try:
lat = float(data.get('lat'))
lon = float(data.get('lon'))
radius_km = float(data.get('radius', 1.0))
except (TypeError, ValueError) as e:
return jsonify({
'success': False,
'error': f'Invalid coordinates: lat={data.get("lat")}, lon={data.get("lon")}, radius={data.get("radius", 1.0)}'
}), 400
print(f"🔍 Analyzing crashes at ({lat:.4f}, {lon:.4f}) within {radius_km}km...")
# Get crashes within radius
crashes = get_crashes_within_radius_mongodb(mongo_collection, lat, lon, radius_km)
# Serialize MongoDB documents to handle ObjectId
crashes_serialized = serialize_mongodb_doc(crashes)
# Get current weather
weather_data, weather_summary = get_current_weather(lat, lon)
# Generate safety analysis using LLM
safety_analysis = analyze_mongodb_crash_patterns(
crashes, lat, lon, radius_km, weather_summary
)
# Remove markdown formatting from safety analysis
if safety_analysis:
# Remove markdown headers (### or **)
safety_analysis = re.sub(r'#+\s*', '', safety_analysis)
# Remove bold formatting (**)
safety_analysis = re.sub(r'\*\*([^*]+)\*\*', r'\1', safety_analysis)
# Remove italic formatting (*)
safety_analysis = re.sub(r'\*([^*]+)\*', r'\1', safety_analysis)
# Remove bullet points and clean up spacing
safety_analysis = re.sub(r'^\s*[\*\-\•]\s*', '', safety_analysis, flags=re.MULTILINE)
# Clean up multiple newlines
safety_analysis = re.sub(r'\n\s*\n', '\n\n', safety_analysis)
# Clean up extra spaces
safety_analysis = re.sub(r'\s+', ' ', safety_analysis)
safety_analysis = safety_analysis.strip()
# Calculate some basic statistics
total_crashes = len(crashes)
avg_distance = sum(crash.get('distance_km', 0) for crash in crashes) / total_crashes if crashes else 0
# Extract crash summary stats
severity_counts = {}
total_casualties = 0
for crash in crashes:
severity = crash.get('severity', 'Unknown')
severity_counts[severity] = severity_counts.get(severity, 0) + 1
casualties = crash.get('casualties', {})
for category in ['bicyclists', 'drivers', 'pedestrians', 'passengers']:
if category in casualties:
cat_data = casualties[category]
total_casualties += (cat_data.get('fatal', 0) +
cat_data.get('major_injuries', 0) +
cat_data.get('minor_injuries', 0))
return jsonify({
'success': True,
'location': {'lat': lat, 'lon': lon},
'radius_km': radius_km,
'crash_summary': {
'total_crashes': total_crashes,
'avg_distance_km': round(avg_distance, 3),
'severity_breakdown': severity_counts,
'total_casualties': total_casualties
},
'weather': {
'summary': weather_summary,
'data': weather_data
},
'safety_analysis': safety_analysis,
'raw_crashes': crashes_serialized[:10] if crashes_serialized else [] # Return first 10 for reference
})
except Exception as e:
print(f"❌ Error in crash analysis: {e}")
traceback.print_exc()
return jsonify({
'success': False,
'error': str(e)
}), 500
@app.route('/api/find-safe-route', methods=['POST'])
def find_safe_route_endpoint():
"""Find the safest route between two points with crash analysis."""
try:
if route_analyzer.collection is None:
return jsonify({
'success': False,
'error': 'Route analyzer not available'
}), 500
data = request.get_json()
if not data:
return jsonify({
'success': False,
'error': 'No route data provided'
}), 400
start_lat = float(data.get('start_lat'))
start_lon = float(data.get('start_lon'))
end_lat = float(data.get('end_lat'))
end_lon = float(data.get('end_lon'))
print(f"🛣️ Finding safe route from ({start_lat:.4f}, {start_lon:.4f}) to ({end_lat:.4f}, {end_lon:.4f})...")
# Find the safest route
results = route_analyzer.find_safer_route(start_lat, start_lon, end_lat, end_lon)
if 'error' in results:
return jsonify({
'success': False,
'error': results['error']
}), 500
# Extract key information for frontend
recommended_route = results['recommended_route']
route_data = recommended_route['route_data']
safety_data = recommended_route['safety_analysis']
# Prepare response
response_data = {
'success': True,
'start_coordinates': {'lat': start_lat, 'lon': start_lon},
'end_coordinates': {'lat': end_lat, 'lon': end_lon},
'recommended_route': {
'coordinates': route_data['coordinates'], # For Mapbox visualization
'distance_km': route_data['distance_km'],
'duration_min': route_data['duration_min'],
'geometry': route_data.get('geometry'), # GeoJSON for Mapbox
'safety_score': safety_data['average_safety_score'],
'crashes_nearby': safety_data['total_crashes_near_route'],
'max_danger_score': safety_data['max_danger_score']
},
'safety_analysis': results['safety_report'],
'weather_summary': results.get('weather_summary'),
'route_comparison': results.get('route_comparison'),
'alternative_routes': []
}
# Add alternative routes if available
for alt_route in results.get('alternative_routes', []):
alt_data = alt_route['route_data']
alt_safety = alt_route['safety_analysis']
response_data['alternative_routes'].append({
'route_id': alt_data['route_id'],
'coordinates': alt_data['coordinates'],
'distance_km': alt_data['distance_km'],
'duration_min': alt_data['duration_min'],
'geometry': alt_data.get('geometry'),
'safety_score': alt_safety['average_safety_score'],
'crashes_nearby': alt_safety['total_crashes_near_route']
})
return jsonify(response_data)
except (TypeError, ValueError) as e:
return jsonify({
'success': False,
'error': 'Invalid route coordinates provided'
}), 400
except Exception as e:
print(f"❌ Error in route finding: {e}")
traceback.print_exc()
return jsonify({
'success': False,
'error': str(e)
}), 500
@app.route('/api/get-single-route', methods=['POST'])
def get_single_route_endpoint():
"""Get a single route with safety analysis (simpler version)."""
try:
data = request.get_json()
if not data:
return jsonify({
'success': False,
'error': 'No data provided'
}), 400
start_lat = float(data.get('start_lat'))
start_lon = float(data.get('start_lon'))
end_lat = float(data.get('end_lat'))
end_lon = float(data.get('end_lon'))
profile = data.get('profile', 'driving') # driving, walking, cycling
# Get route from Mapbox
route_result = route_analyzer.get_route_from_mapbox(
start_lat, start_lon, end_lat, end_lon, profile
)
if not route_result.get('success'):
return jsonify({
'success': False,
'error': route_result.get('error', 'Failed to get route')
}), 500
# Analyze route safety
safety_analysis = route_analyzer.analyze_route_safety(route_result['coordinates'])
if 'error' in safety_analysis:
return jsonify({
'success': False,
'error': safety_analysis['error']
}), 500
# Get weather
weather_data, weather_summary = route_analyzer.get_current_weather(start_lat, start_lon)
# Generate safety report
safety_report = route_analyzer.generate_safety_report_with_llm(
safety_analysis, route_result, weather_summary
)
return jsonify({
'success': True,
'route': {
'coordinates': route_result['coordinates'],
'distance_km': route_result['distance_km'],
'duration_min': route_result['duration_min'],
'geometry': route_result.get('geometry'),
'profile': profile
},
'safety': {
'total_crashes_nearby': safety_analysis['total_crashes_near_route'],
'average_safety_score': safety_analysis['average_safety_score'],
'max_danger_score': safety_analysis['max_danger_score'],
'safety_points': safety_analysis['safety_points']
},
'safety_report': safety_report,
'weather_summary': weather_summary
})
except Exception as e:
print(f"❌ Error getting single route: {e}")
traceback.print_exc()
return jsonify({
'success': False,
'error': str(e)
}), 500
@app.route('/predict', methods=['POST', 'OPTIONS'])
def predict_crash_magnitude():
"""
Predict crash magnitude for a route using AI model.
Expected request body:
{
"source": {"lat": float, "lon": float},
"destination": {"lat": float, "lon": float}
}
"""
# Handle preflight CORS request
if request.method == 'OPTIONS':
response = jsonify({'status': 'ok'})
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type')
response.headers.add('Access-Control-Allow-Methods', 'POST, OPTIONS')
return response
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No JSON data provided'}), 400
# Validate required fields
if 'source' not in data or 'destination' not in data:
return jsonify({'error': 'Missing source or destination coordinates'}), 400
source = data['source']
destination = data['destination']
# Validate coordinate format
required_fields = ['lat', 'lon']
for coord_set, name in [(source, 'source'), (destination, 'destination')]:
for field in required_fields:
if field not in coord_set:
return jsonify({'error': f'Missing {field} in {name} coordinates'}), 400
try:
float(coord_set[field])
except (TypeError, ValueError):
return jsonify({'error': f'Invalid {field} value in {name} coordinates'}), 400
# For now, return a mock prediction based on distance
# In a real implementation, this would call your AI model
import math
lat1, lon1 = float(source['lat']), float(source['lon'])
lat2, lon2 = float(destination['lat']), float(destination['lon'])
# Calculate distance (rough approximation)
distance = math.sqrt((lat2 - lat1)**2 + (lon2 - lon1)**2)
# Mock prediction: longer routes might have higher crash magnitude
# This is just placeholder logic until you integrate your actual AI model
base_magnitude = min(distance * 50, 1.0) # Cap at 1.0
confidence = 0.85 # Mock confidence
response_data = {
'prediction': {
'prediction': base_magnitude,
'confidence': confidence
},
'called_with': f"Route from ({lat1}, {lon1}) to ({lat2}, {lon2})",
'diagnostics': {
'input_dim': 4 # lat1, lon1, lat2, lon2
}
}
print(f"🔮 Crash magnitude prediction request: {data}")
print(f"📊 Returning prediction: {response_data['prediction']['prediction']:.3f}")
response = jsonify(response_data)
response.headers.add('Access-Control-Allow-Origin', '*')
return response
except Exception as e:
print(f"❌ Error in crash magnitude prediction: {e}")
traceback.print_exc()
error_response = jsonify({'error': str(e)})
error_response.headers.add('Access-Control-Allow-Origin', '*')
return error_response, 500
@app.errorhandler(404)
def not_found(error):
return jsonify({'success': False, 'error': 'Endpoint not found'}), 404
@app.errorhandler(500)
def internal_error(error):
return jsonify({'success': False, 'error': 'Internal server error'}), 500
if __name__ == '__main__':
print("🚀 Starting Flask API Server...")
print("📡 Endpoints available:")
print(" - GET /api/health")
print(" - GET /api/weather?lat=X&lon=Y")
print(" - POST /api/analyze-crashes")
print(" - POST /api/find-safe-route")
print(" - POST /api/get-single-route")
print(" - POST /predict (AI crash magnitude prediction)")
print("\n🌐 Server running on http://localhost:5001")
app.run(debug=True, host='0.0.0.0', port=5001)