Files
VTHacks13/roadcast/openmeteo_client.py
samarthjain2023 4da975110b fixed post request
2025-09-28 04:18:22 -04:00

334 lines
10 KiB
Python

"""Open-Meteo historical weather client + simple road-risk heuristics.
Backwards-compatible API:
- fetch_weather(lat, lon, params=None, api_key=None)
- fetch_road_risk(lat, lon, extra_params=None, api_key=None, roadrisk_url=None)
- get_risk_score(lat, lon, **fetch_kwargs)
- compute_reroute(...)
- compute_index_and_reroute(...)
"""
import os
from typing import Tuple, Dict, Any, Optional, Callable, List
import requests
import heapq
import math
from datetime import date, timedelta
# Open-Meteo archive endpoint (no API key required)
BASE_ARCHIVE_URL = "https://archive-api.open-meteo.com/v1/archive"
def fetch_weather(lat: float, lon: float, params: Optional[dict] = None, api_key: Optional[str] = None) -> dict:
"""Fetch historical weather from Open-Meteo archive API.
Params may include 'start_date', 'end_date' (YYYY-MM-DD) and 'hourly' (comma-separated vars).
Defaults to yesterday..today and hourly variables useful for road risk.
(api_key parameter is accepted for compatibility but ignored.)
"""
if params is None:
params = {}
today = date.today()
start = params.get("start_date", (today - timedelta(days=1)).isoformat())
end = params.get("end_date", today.isoformat())
hourly = params.get(
"hourly",
",".join(["temperature_2m", "relativehumidity_2m", "windspeed_10m", "precipitation", "weathercode"])
)
query = {
"latitude": lat,
"longitude": lon,
"start_date": start,
"end_date": end,
"hourly": hourly,
"timezone": params.get("timezone", "UTC"),
}
resp = requests.get(BASE_ARCHIVE_URL, params=query, timeout=15)
resp.raise_for_status()
return resp.json()
def fetch_road_risk(
lat: float,
lon: float,
extra_params: Optional[dict] = None,
api_key: Optional[str] = None,
roadrisk_url: Optional[str] = None
) -> Tuple[dict, Dict[str, Any]]:
"""
Compute a simple road risk estimation using Open-Meteo historical weather.
Returns (raw_data, features) where features includes 'road_risk_score' (float).
api_key and roadrisk_url are accepted for backward compatibility but ignored.
"""
params = {}
if extra_params:
params.update(extra_params)
# fetch weather via Open-Meteo archive
try:
data = fetch_weather(lat, lon, params=params)
except Exception as e:
features: Dict[str, Any] = {"road_risk_score": 0.0, "error": str(e)}
return {}, features
hourly = data.get("hourly", {}) if isinstance(data, dict) else {}
def _arr_mean(key):
arr = hourly.get(key)
if isinstance(arr, list) and arr:
valid = [float(x) for x in arr if x is not None]
return sum(valid) / max(1, len(valid)) if valid else None
return None
def _arr_max(key):
arr = hourly.get(key)
if isinstance(arr, list) and arr:
valid = [float(x) for x in arr if x is not None]
return max(valid) if valid else None
return None
precip_mean = _arr_mean("precipitation")
wind_mean = _arr_mean("windspeed_10m")
wind_max = _arr_max("windspeed_10m")
temp_mean = _arr_mean("temperature_2m")
humidity_mean = _arr_mean("relativehumidity_2m")
weathercodes = hourly.get("weathercode", [])
# heuristic risk scoring:
risk = 0.0
if precip_mean is not None:
risk += float(precip_mean) * 2.0
if wind_mean is not None:
risk += float(wind_mean) * 0.1
if wind_max is not None and float(wind_max) > 15.0:
risk += 1.0
if humidity_mean is not None and float(humidity_mean) > 85.0:
risk += 0.5
try:
# sample Open-Meteo weather codes that indicate precipitation/snow
if any(int(wc) in (51, 61, 63, 65, 80, 81, 82, 71, 73, 75, 85, 86) for wc in weathercodes if wc is not None):
risk += 1.0
except Exception:
pass
if not math.isfinite(risk):
risk = 0.0
if risk < 0:
risk = 0.0
features: Dict[str, Any] = {
"precipitation_mean": float(precip_mean) if precip_mean is not None else None,
"wind_mean": float(wind_mean) if wind_mean is not None else None,
"wind_max": float(wind_max) if wind_max is not None else None,
"temp_mean": float(temp_mean) if temp_mean is not None else None,
"humidity_mean": float(humidity_mean) if humidity_mean is not None else None,
"road_risk_score": float(risk),
}
# include some raw metadata if present
if "latitude" in data:
features["latitude"] = data.get("latitude")
if "longitude" in data:
features["longitude"] = data.get("longitude")
if "generationtime_ms" in data:
features["generationtime_ms"] = data.get("generationtime_ms")
return data, features
def _haversine_km(a_lat: float, a_lon: float, b_lat: float, b_lon: float) -> float:
# returns distance in kilometers
R = 6371.0
lat1, lon1, lat2, lon2 = map(math.radians, (a_lat, a_lon, b_lat, b_lon))
dlat = lat2 - lat1
dlon = lon2 - lon1
h = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
return 2 * R * math.asin(min(1.0, math.sqrt(h)))
def risk_to_index(risk_score: float, max_risk: float = 10.0, num_bins: int = 10) -> int:
"""
Map a numeric risk_score to an integer index 1..num_bins (higher => more risky).
"""
if risk_score is None:
return 1
r = float(risk_score)
if r <= 0:
return 1
if r >= max_risk:
return num_bins
bin_width = max_risk / float(num_bins)
return int(r // bin_width) + 1
def get_risk_score(lat: float, lon: float, **fetch_kwargs) -> float:
"""Wrapper: calls fetch_road_risk and returns features['road_risk_score'] (float)."""
_, features = fetch_road_risk(lat, lon, extra_params=fetch_kwargs)
return float(features.get("road_risk_score", 0.0))
def compute_reroute(
start_lat: float,
start_lon: float,
end_lat: float,
end_lon: float,
risk_provider: Callable[[float, float], float] = None,
n_lat: int = 20,
n_lon: int = 20,
distance_weight: float = 0.1,
max_calls: Optional[int] = None
) -> Dict[str, Any]:
"""
Plan a path from (start_lat, start_lon) to (end_lat, end_lon) that avoids risky areas.
Uses Dijkstra's algorithm over a lat/lon grid with cost = avg risk + distance_weight * distance.
"""
if risk_provider is None:
risk_provider = lambda lat, lon: get_risk_score(lat, lon)
min_lat = min(start_lat, end_lat)
max_lat = max(start_lat, end_lat)
min_lon = min(start_lon, end_lon)
max_lon = max(start_lon, end_lon)
lat_padding = (max_lat - min_lat) * 0.2
lon_padding = (max_lon - min_lon) * 0.2
min_lat -= lat_padding
max_lat += lat_padding
min_lon -= lon_padding
max_lon += lon_padding
lat_step = (max_lat - min_lat) / (n_lat - 1) if n_lat > 1 else 0.0
lon_step = (max_lon - min_lon) / (n_lon - 1) if n_lon > 1 else 0.0
coords = []
for i in range(n_lat):
for j in range(n_lon):
coords.append((min_lat + i * lat_step, min_lon + j * lon_step))
risks = []
calls = 0
for lat, lon in coords:
if max_calls is not None and calls >= max_calls:
risks.append(float('inf'))
continue
try:
risk = risk_provider(lat, lon)
except Exception:
risk = float('inf')
risks.append(float(risk))
calls += 1
def idx(i, j):
return i * n_lon + j
def find_closest(lat, lon):
i = round((lat - min_lat) / (lat_step if lat_step != 0 else 1e-9))
j = round((lon - min_lon) / (lon_step if lon_step != 0 else 1e-9))
i = max(0, min(n_lat - 1, i))
j = max(0, min(n_lon - 1, j))
return idx(i, j)
start_idx = find_closest(start_lat, start_lon)
end_idx = find_closest(end_lat, end_lon)
N = len(coords)
dist = [math.inf] * N
prev = [None] * N
dist[start_idx] = 0.0
pq = [(0.0, start_idx)]
while pq:
cost, u = heapq.heappop(pq)
if cost > dist[u]:
continue
if u == end_idx:
break
ui, uj = u // n_lon, u % n_lon
for di, dj in ((1, 0), (-1, 0), (0, 1), (0, -1)):
vi, vj = ui + di, uj + dj
if 0 <= vi < n_lat and 0 <= vj < n_lon:
v = idx(vi, vj)
if math.isinf(risks[v]) or math.isinf(risks[u]):
continue
lat_u, lon_u = coords[u]
lat_v, lon_v = coords[v]
d_km = _haversine_km(lat_u, lon_u, lat_v, lon_v)
edge_cost = (risks[u] + risks[v]) / 2 + distance_weight * d_km
new_cost = cost + edge_cost
if new_cost < dist[v]:
dist[v] = new_cost
prev[v] = u
heapq.heappush(pq, (new_cost, v))
if math.isinf(dist[end_idx]):
return {
"reroute_needed": False,
"reason": "no_path_found",
"start_coord": (start_lat, start_lon),
"end_coord": (end_lat, end_lon),
"calls_made": calls
}
path_indices = []
u = end_idx
while u is not None:
path_indices.append(u)
u = prev[u]
path_indices.reverse()
path_coords = [coords[i] for i in path_indices]
return {
"reroute_needed": True,
"start_coord": (start_lat, start_lon),
"end_coord": (end_lat, end_lon),
"path": path_coords,
"total_cost": dist[end_idx],
"start_risk": risks[start_idx],
"end_risk": risks[end_idx],
"calls_made": calls,
"grid_shape": (n_lat, n_lon)
}
# def compute_index(lat: float,
# lon: float,
# max_risk: float = 10.0,
# num_bins: int = 10,
# risk_provider: Optional[Callable[[float, float], float]] = None) -> int:
# """
# Computes and returns an index based on road risk and accident information.
# Args:
# lat: Latitude of the location.
# lon: Longitude of the location.
# max_risk: Maximum possible road risk score.
# num_bins: Number of bins to divide the risk range into.
# reroute_kwargs: Optional dictionary passed to reroute logic.
# risk_provider: Optional custom risk provider function.
# Returns:
# An integer index (1 to num_bins) based on computed road risk.
# """
# # If a risk provider is not provided, use a default one
# if risk_provider is None:
# risk_provider = lambda lat, lon: get_risk_score(lat, lon)
# # Fetch road risk score using the provided risk provider
# road_risk = float(risk_provider(lat, lon))
# # Compute the index based on road risk score and the max_risk, num_bins parameters
# # The formula will divide the risk score into `num_bins` bins
# # The index will be a number between 1 and num_bins based on the risk score
# # Normalize the risk score to be between 0 and max_risk
# normalized_risk = min(road_risk, max_risk) / max_risk
# # Compute the index based on the normalized risk score
# index = int(normalized_risk * num_bins)
# # Ensure the index is within the expected range of 1 to num_bins
# return max(1, min(index + 1, num_bins)) # Adding 1 because index is 0-based