Files
VTHacks13/roadcast/openweather_client.py
2025-09-27 19:12:09 -04:00

343 lines
13 KiB
Python

"""OpenWeather / Road Risk client.
Provides:
- fetch_weather(lat, lon, api_key=None)
- fetch_road_risk(lat, lon, api_key=None, roadrisk_url=None, extra_params=None)
Never hardcode API keys in source. Provide via api_key argument or set OPENWEATHER_API_KEY / OPENWEATHER_KEY env var.
"""
import os
from typing import Tuple, Dict, Any, Optional, Callable, List
import requests
import heapq
import math
def _get_api_key(explicit_key: Optional[str] = None) -> Optional[str]:
if explicit_key:
return explicit_key
return os.environ.get("OPENWEATHER_API_KEY") or os.environ.get("OPENWEATHER_KEY")
BASE_URL = "https://api.openweathermap.org/data/2.5"
def fetch_weather(lat: float, lon: float, params: Optional[dict] = None, api_key: Optional[str] = None) -> dict:
"""Call standard OpenWeather /weather endpoint and return parsed JSON."""
key = _get_api_key(api_key)
if key is None:
raise RuntimeError("Set OPENWEATHER_API_KEY or OPENWEATHER_KEY or pass api_key")
q = {"lat": lat, "lon": lon, "appid": key, "units": "metric"}
if params:
q.update(params)
resp = requests.get(f"{BASE_URL}/weather", params=q, timeout=10)
resp.raise_for_status()
return resp.json()
def fetch_road_risk(lat: float, lon: float, extra_params: Optional[dict] = None, api_key: Optional[str] = None, roadrisk_url: Optional[str] = None) -> Tuple[dict, Dict[str, Any]]:
"""
Call OpenWeather /roadrisk endpoint (or provided roadrisk_url) and return (raw_json, features).
features will always include 'road_risk_score' (float). Other numeric fields are included when present.
The implementation:
- prefers explicit numeric keys (road_risk_score, risk_score, score, risk)
- if absent, collects top-level numeric fields and averages common contributors
- if still absent, falls back to a simple weather-derived heuristic using /weather
Note: Do not commit API keys. Pass api_key or set env var.
"""
key = _get_api_key(api_key)
if key is None:
raise RuntimeError("Set OPENWEATHER_API_KEY or OPENWEATHER_KEY or pass api_key")
params = {"lat": lat, "lon": lon, "appid": key}
if extra_params:
params.update(extra_params)
url = roadrisk_url or f"{BASE_URL}/roadrisk"
resp = requests.get(url, params=params, timeout=10)
resp.raise_for_status()
data = resp.json()
features: Dict[str, Any] = {}
risk: Optional[float] = None
# direct candidates
for candidate in ("road_risk_score", "risk_score", "risk", "score"):
if isinstance(data, dict) and candidate in data:
try:
risk = float(data[candidate])
features[candidate] = risk
break
except Exception:
pass
# if no direct candidate, collect numeric top-level fields
if risk is None and isinstance(data, dict):
numeric_fields = {}
for k, v in data.items():
if isinstance(v, (int, float)):
numeric_fields[k] = float(v)
features.update(numeric_fields)
# try averaging common contributors if present
contributors = []
for name in ("precipitation", "rain", "snow", "visibility", "wind_speed"):
if name in data and isinstance(data[name], (int, float)):
contributors.append(float(data[name]))
if contributors:
# average contributors -> risk proxy
risk = float(sum(contributors) / len(contributors))
# fallback: derive crude risk from /weather
if risk is None:
try:
w = fetch_weather(lat, lon, api_key=key)
main = w.get("main", {})
wind = w.get("wind", {})
weather = w.get("weather", [{}])[0]
# heuristic: rain + high wind + low visibility
derived = 0.0
if isinstance(weather.get("main", ""), str) and "rain" in weather.get("main", "").lower():
derived += 1.0
if (wind.get("speed") or 0) > 6.0:
derived += 0.5
if (w.get("visibility") or 10000) < 5000:
derived += 1.0
risk = float(derived)
features.update({
"temp": main.get("temp"),
"humidity": main.get("humidity"),
"wind_speed": wind.get("speed"),
"visibility": w.get("visibility"),
"weather_main": weather.get("main"),
"weather_id": weather.get("id"),
})
except Exception:
# cannot derive anything; set neutral 0.0
risk = 0.0
features["road_risk_score"] = float(risk)
return data, features
def _haversine_km(a_lat: float, a_lon: float, b_lat: float, b_lon: float) -> float:
# returns distance in kilometers
R = 6371.0
lat1, lon1, lat2, lon2 = map(math.radians, (a_lat, a_lon, b_lat, b_lon))
dlat = lat2 - lat1
dlon = lon2 - lon1
h = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
return 2 * R * math.asin(min(1.0, math.sqrt(h)))
def risk_to_index(risk_score: float, max_risk: float = 10.0, num_bins: int = 10) -> int:
"""
Map a numeric risk_score to an integer index 1..num_bins (higher => more risky).
Uses equal-width bins: 0..(max_risk/num_bins) -> 1, ..., >=max_risk -> num_bins.
"""
if risk_score is None:
return 1
r = float(risk_score)
if r <= 0:
return 1
if r >= max_risk:
return num_bins
bin_width = max_risk / float(num_bins)
return int(r // bin_width) + 1
def get_risk_score(lat: float, lon: float, **fetch_kwargs) -> float:
"""
Wrapper: calls fetch_road_risk and returns features['road_risk_score'] (float).
Pass api_key/roadrisk_url via fetch_kwargs as needed.
"""
_, features = fetch_road_risk(lat, lon, **fetch_kwargs)
return float(features.get("road_risk_score", 0.0))
def compute_reroute(start_lat: float,
start_lon: float,
risk_provider: Callable[[float, float], float] = None,
lat_range: float = 0.005,
lon_range: float = 0.01,
n_lat: int = 7,
n_lon: int = 7,
max_calls: Optional[int] = None,
distance_weight: float = 0.1) -> Dict[str, Any]:
"""
Sample a grid around (start_lat, start_lon), get risk at each grid node via risk_provider,
find the node with minimum risk, and run Dijkstra on the grid (4-neighbors) where edge cost =
average node risk + distance_weight * distance_km. Returns path and stats.
Defaults: n_lat/n_lon small to limit API calls. max_calls optionally caps number of risk_provider calls.
"""
if risk_provider is None:
# default risk provider that calls fetch_road_risk (may require API key in env or fetch_kwargs)
def _rp(lat, lon): return get_risk_score(lat, lon)
risk_provider = _rp
# build grid coordinates
lat_steps = n_lat
lon_steps = n_lon
if lat_steps < 2 or lon_steps < 2:
raise ValueError("n_lat and n_lon must be >= 2")
lat0 = start_lat - lat_range
lon0 = start_lon - lon_range
lat_step = (2 * lat_range) / (lat_steps - 1)
lon_step = (2 * lon_range) / (lon_steps - 1)
coords: List[Tuple[float, float]] = []
for i in range(lat_steps):
for j in range(lon_steps):
coords.append((lat0 + i * lat_step, lon0 + j * lon_step))
# sample risks with caching and optional call limit
risks: List[float] = []
calls = 0
for (lat, lon) in coords:
if max_calls is not None and calls >= max_calls:
# conservative fallback: assume same as start risk if call limit reached
risks.append(float('inf'))
continue
try:
r = float(risk_provider(lat, lon))
except Exception:
r = float('inf')
risks.append(r)
calls += 1
# convert to grid indexed by (i,j)
def idx(i, j): return i * lon_steps + j
# find start index (closest grid node to start)
start_i = round((start_lat - lat0) / lat_step)
start_j = round((start_lon - lon0) / lon_step)
start_i = max(0, min(lat_steps - 1, start_i))
start_j = max(0, min(lon_steps - 1, start_j))
start_index = idx(start_i, start_j)
# find target node = min risk node (ignore inf)
min_risk = min(risks)
if math.isinf(min_risk) or min_risk >= risks[start_index]:
# no better location found or sampling failed
return {
"reroute_needed": False,
"reason": "no_lower_risk_found",
"start_coord": (start_lat, start_lon),
"start_risk": None if math.isinf(risks[start_index]) else risks[start_index],
}
target_index = int(risks.index(min_risk))
# Dijkstra from start_index to target_index
N = len(coords)
dist = [math.inf] * N
prev = [None] * N
dist[start_index] = 0.0
pq = [(0.0, start_index)]
while pq:
d, u = heapq.heappop(pq)
if d > dist[u]:
continue
if u == target_index:
break
ui = u // lon_steps
uj = u % lon_steps
for di, dj in ((1,0),(-1,0),(0,1),(0,-1)):
vi, vj = ui + di, uj + dj
if 0 <= vi < lat_steps and 0 <= vj < lon_steps:
v = idx(vi, vj)
# cost: average node risk + small distance penalty
ru = risks[u]
rv = risks[v]
if math.isinf(ru) or math.isinf(rv):
continue
lat_u, lon_u = coords[u]
lat_v, lon_v = coords[v]
d_km = _haversine_km(lat_u, lon_u, lat_v, lon_v)
w = (ru + rv) / 2.0 + distance_weight * d_km
nd = d + w
if nd < dist[v]:
dist[v] = nd
prev[v] = u
heapq.heappush(pq, (nd, v))
if math.isinf(dist[target_index]):
return {
"reroute_needed": False,
"reason": "no_path_found",
"start_coord": (start_lat, start_lon),
"start_risk": risks[start_index],
"target_risk": risks[target_index],
}
# reconstruct path
path_indices = []
cur = target_index
while cur is not None:
path_indices.append(cur)
cur = prev[cur]
path_indices.reverse()
path_coords = [coords[k] for k in path_indices]
start_risk = risks[start_index]
end_risk = risks[target_index]
improvement = (start_risk - end_risk) if start_risk not in (None, float('inf')) else None
return {
"reroute_needed": True,
"start_coord": (start_lat, start_lon),
"start_risk": start_risk,
"target_coord": coords[target_index],
"target_risk": end_risk,
"path": path_coords,
"path_cost": dist[target_index],
"risk_improvement": improvement,
"grid_shape": (lat_steps, lon_steps),
"calls_made": calls,
}
def compute_index_and_reroute(lat: float,
lon: float,
api_key: Optional[str] = None,
roadrisk_url: Optional[str] = None,
max_risk: float = 10.0,
num_bins: int = 10,
reroute_kwargs: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""
High-level convenience: get road risk, map to index (1..num_bins), and attempt reroute.
reroute_kwargs are forwarded to compute_reroute (risk_provider will call fetch_road_risk
using provided api_key/roadrisk_url).
"""
if reroute_kwargs is None:
reroute_kwargs = {}
# obtain base risk
data, features = fetch_road_risk(lat, lon, api_key=api_key, roadrisk_url=roadrisk_url)
road_risk = float(features.get("road_risk_score", 0.0))
# compute index: if 'accidents' present in features, prefer that mapping
accidents = features.get("accidents") or features.get("accident_count")
try:
if accidents is not None:
# map raw accident count to index 1..num_bins
from .models import accidents_to_bucket
idx = accidents_to_bucket(int(accidents), max_count=20000, num_bins=num_bins)
else:
idx = risk_to_index(road_risk, max_risk=max_risk, num_bins=num_bins)
except Exception:
idx = risk_to_index(road_risk, max_risk=max_risk, num_bins=num_bins)
# prepare risk_provider that passes api_key/roadrisk_url through
def _rp(lat_, lon_):
return get_risk_score(lat_, lon_, api_key=api_key, roadrisk_url=roadrisk_url)
reroute_info = compute_reroute(lat, lon, risk_provider=_rp, **reroute_kwargs)
return {
"lat": lat,
"lon": lon,
"index": int(idx),
"road_risk_score": road_risk,
"features": features,
"reroute": reroute_info,
"raw_roadrisk_response": data,
}