Files
VTHacks13/ai/test_queries.py
2025-09-27 22:45:52 -04:00

116 lines
3.2 KiB
Python

import os
from pymongo import MongoClient
from dotenv import load_dotenv
# Load environment variables
load_dotenv('.env.local')
# MongoDB connection
MONGO_URI = os.getenv('MONGO_URI')
client = MongoClient(MONGO_URI)
db = client['crashes']
collection = db['crashes']
print("=== MongoDB Geospatial Query Examples ===\n")
# 1. Count total documents
print("1. Total crash records in database:")
total_count = collection.count_documents({})
print(f" {total_count} crash records\n")
# 2. Find crashes within a radius (near the White House)
print("2. Crashes within 500 meters of the White House:")
white_house = [-77.0365, 38.8977]
nearby_crashes = list(collection.find({
"location": {
"$nearSphere": {
"$geometry": {
"type": "Point",
"coordinates": white_house
},
"$maxDistance": 500 # 500 meters
}
}
}).limit(5))
for crash in nearby_crashes:
print(f" - {crash['crashId']}: {crash['address']} (Severity: {crash['severity']})")
print()
# 3. Find crashes within a bounding box (downtown DC area)
print("3. Crashes within downtown DC bounding box:")
downtown_crashes = list(collection.find({
"location": {
"$geoWithin": {
"$box": [
[-77.05, 38.88], # Southwest corner
[-77.01, 38.92] # Northeast corner
]
}
}
}).limit(5))
for crash in downtown_crashes:
print(f" - {crash['crashId']}: {crash['address']} (Ward: {crash['ward']})")
print()
# 4. Aggregation with geoNear for fatal crashes
print("4. Fatal crashes near Capitol Hill (within 1km):")
capitol_hill = [-77.0090, 38.8899]
fatal_nearby = list(collection.aggregate([
{
"$geoNear": {
"near": {
"type": "Point",
"coordinates": capitol_hill
},
"distanceField": "distance",
"maxDistance": 1000,
"query": {"severity": "Fatal"},
"spherical": True
}
},
{"$limit": 3}
]))
for crash in fatal_nearby:
distance_m = round(crash['distance'])
print(f" - {crash['crashId']}: {crash['address']} ({distance_m}m away)")
print()
# 5. Count crashes by severity within a specific area
print("5. Crash severity breakdown in Ward 1:")
severity_breakdown = list(collection.aggregate([
{"$match": {"ward": "Ward 1"}},
{"$group": {"_id": "$severity", "count": {"$sum": 1}}},
{"$sort": {"count": -1}}
]))
for item in severity_breakdown:
print(f" - {item['_id']}: {item['count']} crashes")
print()
# 6. Find crashes involving speeding within a polygon area
print("6. Speeding-involved crashes near DuPont Circle:")
dupont_circle = [-77.0436, 38.9094]
speeding_crashes = list(collection.find({
"location": {
"$nearSphere": {
"$geometry": {
"type": "Point",
"coordinates": dupont_circle
},
"$maxDistance": 800
}
},
"circumstances.speeding_involved": True
}).limit(3))
for crash in speeding_crashes:
print(f" - {crash['crashId']}: {crash['address']}")
print(f" Vehicles: {crash['vehicles']['total']}, Severity: {crash['severity']}")
print()
print("=== Geospatial queries completed successfully! ===")
client.close()