185 lines
6.6 KiB
Python
185 lines
6.6 KiB
Python
from flask import Flask, request, jsonify
|
|
from dotenv import load_dotenv
|
|
|
|
# Load environment variables from .env file
|
|
load_dotenv()
|
|
|
|
app = Flask(__name__)
|
|
import os
|
|
import threading
|
|
import json
|
|
|
|
# ML imports are lazy to avoid heavy imports on simple runs
|
|
|
|
|
|
@app.route('/get-data', methods=['GET'])
|
|
def get_data():
|
|
# Example GET request handler
|
|
data = {"message": "Hello from Flask!"}
|
|
return jsonify(data)
|
|
|
|
@app.route('/post-data', methods=['POST'])
|
|
def post_data():
|
|
# Example POST request handler
|
|
content = request.json
|
|
# Process content or call AI model here
|
|
response = {"you_sent": content}
|
|
return jsonify(response)
|
|
|
|
|
|
@app.route('/train', methods=['POST'])
|
|
def train_endpoint():
|
|
"""Trigger training. Expects JSON: {"data_root": "path/to/data", "epochs": 3}
|
|
Training runs in a background thread and saves model to model.pth in repo root.
|
|
"""
|
|
payload = request.json or {}
|
|
data_root = payload.get('data_root')
|
|
epochs = int(payload.get('epochs', 3))
|
|
if not data_root or not os.path.isdir(data_root):
|
|
return jsonify({"error": "data_root must be a valid directory path"}), 400
|
|
|
|
def _run_training():
|
|
from train import train
|
|
train(data_root, epochs=epochs)
|
|
|
|
t = threading.Thread(target=_run_training, daemon=True)
|
|
t.start()
|
|
return jsonify({"status": "training_started"})
|
|
|
|
|
|
@app.route('/predict', methods=['POST', 'GET'])
|
|
def predict_endpoint():
|
|
"""Predict route between two points given source and destination with lat and lon.
|
|
|
|
Expectation:
|
|
- POST with JSON: {"source": {"lat": .., "lon": ..}, "destination": {"lat": .., "lon": ..}}
|
|
- GET returns usage instructions for quick browser testing.
|
|
"""
|
|
if request.method == 'GET':
|
|
return jsonify({
|
|
"info": "This endpoint expects a POST with JSON body.",
|
|
"example": {
|
|
"source": {"lat": 38.9, "lon": -77.0},
|
|
"destination": {"lat": 38.95, "lon": -77.02}
|
|
},
|
|
"note": "Use POST to receive a prediction. Example: curl -X POST -H 'Content-Type: application/json' -d '{\"source\": {\"lat\": 38.9, \"lon\": -77.0}, \"destination\": {\"lat\": 38.95, \"lon\": -77.02}}' http://127.0.0.1:5000/predict"
|
|
}), 200
|
|
|
|
data = request.json or {}
|
|
source = data.get('source')
|
|
destination = data.get('destination')
|
|
if not source or not destination:
|
|
return jsonify({"error": "both 'source' and 'destination' fields are required"}), 400
|
|
try:
|
|
src_lat = float(source.get('lat'))
|
|
src_lon = float(source.get('lon'))
|
|
dst_lat = float(destination.get('lat'))
|
|
dst_lon = float(destination.get('lon'))
|
|
except (TypeError, ValueError):
|
|
return jsonify({"error": "invalid lat or lon values; must be numbers"}), 400
|
|
|
|
# Ensure compute_reroute exists and is callable
|
|
try:
|
|
from openweather_client import compute_reroute
|
|
except Exception as e:
|
|
return jsonify({
|
|
"error": "compute_reroute not found in openweather_client",
|
|
"detail": str(e),
|
|
"hint": "Provide openweather_client.compute_reroute or implement a callable that accepts (src_lat, src_lon, dst_lat, dst_lon)"
|
|
}), 500
|
|
|
|
if not callable(compute_reroute):
|
|
return jsonify({"error": "openweather_client.compute_reroute is not callable"}), 500
|
|
|
|
# Call compute_reroute with fallback strategies
|
|
try:
|
|
try:
|
|
result = compute_reroute(src_lat, src_lon, dst_lat, dst_lon)
|
|
except TypeError:
|
|
# fallback: single payload dict
|
|
payload = {'source': {'lat': src_lat, 'lon': src_lon}, 'destination': {'lat': dst_lat, 'lon': dst_lon}}
|
|
result = compute_reroute(payload)
|
|
|
|
# Normalize response
|
|
if isinstance(result, dict):
|
|
return jsonify(result)
|
|
else:
|
|
return jsonify({"result": result})
|
|
except Exception as e:
|
|
return jsonify({"error": "compute_reroute invocation failed", "detail": str(e)}), 500
|
|
|
|
|
|
@app.route('/')
|
|
def home():
|
|
return "<h1>Welcome to the Flask App</h1><p>Try /get-data or /health endpoints.</p>"
|
|
|
|
@app.route('/predict-roadrisk', methods=['POST'])
|
|
def predict_roadrisk():
|
|
"""Proxy endpoint to predict a roadrisk cluster from lat/lon/datetime.
|
|
|
|
Expects JSON body with: {"lat": 38.9, "lon": -77.0, "datetime": "2025-09-27T12:00:00", "roadrisk_url": "https://..."}
|
|
If roadrisk_url is not provided the endpoint will call OpenWeather OneCall (requires API key via OPENWEATHER_KEY env var).
|
|
"""
|
|
payload = request.json or {}
|
|
lat = payload.get('lat')
|
|
lon = payload.get('lon')
|
|
dt = payload.get('datetime')
|
|
street = payload.get('street', '')
|
|
roadrisk_url = payload.get('roadrisk_url')
|
|
# prefer explicit api_key in request, otherwise read from OPENWEATHER_API_KEY env var
|
|
api_key = payload.get('api_key') or os.environ.get('OPENWEATHER_API_KEY')
|
|
|
|
if lat is None or lon is None:
|
|
return jsonify({"error": "lat and lon are required fields"}), 400
|
|
|
|
try:
|
|
from openweather_inference import predict_from_openweather
|
|
# pass api_key (may be None) to the inference helper; helper will raise if a key is required
|
|
res = predict_from_openweather(
|
|
lat, lon,
|
|
dt_iso=dt,
|
|
street=street,
|
|
api_key=api_key,
|
|
train_csv=os.path.join(os.getcwd(), 'data.csv'),
|
|
preprocess_meta=None,
|
|
model_path=os.path.join(os.getcwd(), 'model.pth'),
|
|
centers_path=os.path.join(os.getcwd(), 'kmeans_centers_all.npz'),
|
|
roadrisk_url=roadrisk_url
|
|
)
|
|
return jsonify(res)
|
|
except Exception as e:
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
@app.route('/health', methods=['GET'])
|
|
def health():
|
|
"""Return status of loaded ML artifacts (model, centers, preprocess_meta)."""
|
|
try:
|
|
from openweather_inference import init_inference
|
|
status = init_inference()
|
|
return jsonify({'ok': True, 'artifacts': status})
|
|
except Exception as e:
|
|
return jsonify({'ok': False, 'error': str(e)}), 500
|
|
|
|
if __name__ == '__main__':
|
|
# eager load model/artifacts at startup (best-effort)
|
|
try:
|
|
from openweather_inference import init_inference
|
|
init_inference()
|
|
except Exception:
|
|
pass
|
|
app.run(debug=True)
|
|
|
|
# @app.route('/post-data', methods=['POST'])
|
|
# def post_data():
|
|
# content = request.json
|
|
# user_input = content.get('input')
|
|
|
|
# # Example: Simple echo AI (replace with real AI model code)
|
|
# ai_response = f"AI received: {user_input}"
|
|
|
|
# return jsonify({"response": ai_response})
|
|
# ai_response = f"AI received: {user_input}"
|
|
|
|
# return jsonify({"response": ai_response"})
|