Files
VTHacks13/roadcast/command.txt
Pranav Malladi 629444c382 Added Weather API
2025-09-27 18:13:53 -04:00

26 lines
1.3 KiB
Plaintext

train the model:
python train.py data.csv --model-type mlp --generate-labels --label-method kmeans --n-buckets 50 --hidden-dims 512,256 --epochs 8 --batch-size 256 --feature-engineer --weight-decay 1e-5 --seed 42
python train.py data.csv --model-type mlp --generate-labels --label-method kmeans --n-buckets 50 --hidden-dims 1024,512 --epochs 12 --batch-size 256 --lr 1e-3 --lr-step-size 4 --lr-gamma 0.5 --feature-engineer --weight-decay 1e-5 --seed 42
# train with outputs saved to output/
python train.py data.csv --model-type mlp --generate-labels --label-method kmeans --n-buckets 50 --hidden-dims 512,256 --epochs 8 --batch-size 256 --feature-engineer --weight-decay 1e-5 --seed 42 --output-dir output/
# evaluate and visualize:
python evaluate_and_visualize.py \
--checkpoint path/to/checkpoint.pt \
--data data.csv \
--label-col original_label_column_name \
--batch-size 256 \
--sample-index 5 \
--plot
# evaluate
python evaluate_and_visualize.py --checkpoint output/model.pth --data data.csv --label-col label --plot --sample-index 5
# If you used generated labels during training and train.py saved metadata,
# the evaluator will prefer generated labels saved in label_info.json inside the checkpoint dir.
# fetch weather (placeholder)
# from openweather_client import fetch_road_risk
# print(fetch_road_risk(37.7749, -122.4194))