UI and Audio Processing Update
This commit is contained in:
212
server/app.py
212
server/app.py
@@ -1,11 +1,13 @@
|
||||
import os
|
||||
import time
|
||||
from flask import Flask, request, send_file, jsonify
|
||||
import json
|
||||
from flask import Flask, request, send_file, jsonify, send_from_directory, Response
|
||||
from flask_cors import CORS
|
||||
from werkzeug.utils import secure_filename
|
||||
from processor import AudioImageProcessor
|
||||
|
||||
app = Flask(__name__)
|
||||
# Serve the build folder from the parent directory
|
||||
app = Flask(__name__, static_folder='../build', static_url_path='')
|
||||
CORS(app) # Allow Svelte to communicate
|
||||
|
||||
# Configuration
|
||||
@@ -19,10 +21,55 @@ def save_upload(file_obj):
|
||||
file_obj.save(path)
|
||||
return path
|
||||
|
||||
# --- Frontend Routes ---
|
||||
@app.route('/')
|
||||
def index():
|
||||
return send_from_directory(app.static_folder, 'index.html')
|
||||
|
||||
@app.errorhandler(404)
|
||||
def not_found(e):
|
||||
# If the path starts with /api, return actual 404
|
||||
if request.path.startswith('/api/'):
|
||||
return jsonify({"error": "Not found"}), 404
|
||||
# Otherwise return index.html for SPA routing
|
||||
return send_from_directory(app.static_folder, 'index.html')
|
||||
|
||||
@app.route('/health', methods=['GET'])
|
||||
def health():
|
||||
return jsonify({"status": "ok", "max_mb": 40})
|
||||
|
||||
# --- Background Cleanup ---
|
||||
import threading
|
||||
|
||||
def cleanup_task():
|
||||
"""Background thread to clean up old files."""
|
||||
expiration_seconds = 600 # 10 minutes
|
||||
while True:
|
||||
try:
|
||||
now = time.time()
|
||||
if os.path.exists(UPLOAD_FOLDER):
|
||||
for filename in os.listdir(UPLOAD_FOLDER):
|
||||
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
||||
if os.path.isfile(filepath):
|
||||
# check creation time
|
||||
if now - os.path.getctime(filepath) > expiration_seconds:
|
||||
try:
|
||||
os.remove(filepath)
|
||||
print(f"Cleaned up: {filename}")
|
||||
except Exception as e:
|
||||
print(f"Error cleaning {filename}: {e}")
|
||||
except Exception as e:
|
||||
print(f"Cleanup Error: {e}")
|
||||
|
||||
time.sleep(60) # Run every minute
|
||||
|
||||
# Start cleanup thread safely
|
||||
if os.environ.get('WERKZEUG_RUN_MAIN') == 'true' or not os.environ.get('WERKZEUG_RUN_MAIN'):
|
||||
# Simple check to try and avoid double threads in reloader, though not perfect
|
||||
t = threading.Thread(target=cleanup_task, daemon=True)
|
||||
t.start()
|
||||
|
||||
|
||||
# --- Endpoint 1: Create Art (Optional: Embed Audio in it) ---
|
||||
@app.route('/api/generate-art', methods=['POST'])
|
||||
def generate_art():
|
||||
@@ -32,35 +79,48 @@ def generate_art():
|
||||
audio_file = request.files['audio']
|
||||
should_embed = request.form.get('embed', 'false').lower() == 'true'
|
||||
|
||||
audio_path = None
|
||||
art_path = None
|
||||
|
||||
try:
|
||||
# 1. Save Audio
|
||||
audio_path = save_upload(audio_file)
|
||||
|
||||
# 2. Generate Art
|
||||
art_path = processor.generate_spectrogram(audio_path)
|
||||
min_pixels = 0
|
||||
if should_embed:
|
||||
# Calculate required pixels: File Bytes * 8 (bits) / 3 (channels)
|
||||
# Add 5% buffer for header and safety
|
||||
file_size = os.path.getsize(audio_path)
|
||||
min_pixels = int((file_size * 8 / 3) * 1.05)
|
||||
|
||||
art_path = processor.generate_spectrogram(audio_path, min_pixels=min_pixels)
|
||||
|
||||
# 3. If Embed requested, run Steganography immediately using the art as host
|
||||
final_path = art_path
|
||||
if should_embed:
|
||||
# art_path becomes the host, audio_path is the data
|
||||
final_path = processor.encode_stego(audio_path, art_path)
|
||||
|
||||
# If we created a new stego image, the pure art_path is intermediate (and audio is input)
|
||||
# We can delete art_path now if it's different (it is)
|
||||
if art_path != final_path:
|
||||
try: os.remove(art_path)
|
||||
except: pass
|
||||
|
||||
return send_file(final_path, mimetype='image/png')
|
||||
|
||||
except ValueError as e:
|
||||
return jsonify({"error": str(e)}), 400
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
finally:
|
||||
# Cleanup Inputs
|
||||
if audio_path and os.path.exists(audio_path):
|
||||
try: os.remove(audio_path)
|
||||
except: pass
|
||||
|
||||
|
||||
# --- Endpoint 2: Format Shift (Audio -> Static) ---
|
||||
@app.route('/api/shift', methods=['POST'])
|
||||
def shift_format():
|
||||
if 'file' not in request.files:
|
||||
return jsonify({"error": "No file provided"}), 400
|
||||
|
||||
try:
|
||||
f_path = save_upload(request.files['file'])
|
||||
img_path = processor.encode_shift(f_path)
|
||||
return send_file(img_path, mimetype='image/png')
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
|
||||
# --- Endpoint 3: Steganography (Audio + Custom Host) ---
|
||||
@app.route('/api/hide', methods=['POST'])
|
||||
@@ -68,14 +128,25 @@ def hide_data():
|
||||
if 'data' not in request.files or 'host' not in request.files:
|
||||
return jsonify({"error": "Requires 'data' and 'host' files"}), 400
|
||||
|
||||
data_path = None
|
||||
host_path = None
|
||||
try:
|
||||
data_path = save_upload(request.files['data'])
|
||||
host_path = save_upload(request.files['host'])
|
||||
|
||||
stego_path = processor.encode_stego(data_path, host_path)
|
||||
return send_file(stego_path, mimetype='image/png')
|
||||
except ValueError as e:
|
||||
return jsonify({"error": str(e)}), 400
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
finally:
|
||||
if data_path and os.path.exists(data_path):
|
||||
try: os.remove(data_path)
|
||||
except: pass
|
||||
if host_path and os.path.exists(host_path):
|
||||
try: os.remove(host_path)
|
||||
except: pass
|
||||
|
||||
# --- Endpoint 4: Decode (Universal) ---
|
||||
@app.route('/api/decode', methods=['POST'])
|
||||
@@ -83,6 +154,7 @@ def decode():
|
||||
if 'image' not in request.files:
|
||||
return jsonify({"error": "No image provided"}), 400
|
||||
|
||||
img_path = None
|
||||
try:
|
||||
img_path = save_upload(request.files['image'])
|
||||
restored_path = processor.decode_image(img_path)
|
||||
@@ -90,8 +162,118 @@ def decode():
|
||||
# Determine mimetype based on extension for browser friendliness
|
||||
filename = os.path.basename(restored_path)
|
||||
return send_file(restored_path, as_attachment=True, download_name=filename)
|
||||
except ValueError as e:
|
||||
return jsonify({"error": str(e)}), 400
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
finally:
|
||||
if img_path and os.path.exists(img_path):
|
||||
try: os.remove(img_path)
|
||||
except: pass
|
||||
|
||||
# --- Endpoint 4: Visualizer SSE Stream ---
|
||||
@app.route('/api/visualize', methods=['POST'])
|
||||
def visualize():
|
||||
"""
|
||||
SSE endpoint that streams the spectrogram generation process.
|
||||
Returns step-by-step updates for visualization.
|
||||
"""
|
||||
if 'audio' not in request.files:
|
||||
return jsonify({"error": "No audio file provided"}), 400
|
||||
|
||||
audio_file = request.files['audio']
|
||||
audio_path = None
|
||||
|
||||
try:
|
||||
audio_path = save_upload(audio_file)
|
||||
file_size = os.path.getsize(audio_path)
|
||||
min_pixels = int((file_size * 8 / 3) * 1.05)
|
||||
|
||||
def generate_steps():
|
||||
art_path = None
|
||||
final_path = None
|
||||
|
||||
try:
|
||||
import base64
|
||||
|
||||
# Step 1: Audio loaded
|
||||
yield f"data: {json.dumps({'step': 1, 'status': 'loading', 'message': 'Loading audio file...', 'progress': 10})}\n\n"
|
||||
time.sleep(0.8)
|
||||
|
||||
yield f"data: {json.dumps({'step': 1, 'status': 'complete', 'message': f'Audio loaded: {audio_file.filename}', 'progress': 20, 'fileSize': file_size})}\n\n"
|
||||
time.sleep(0.5)
|
||||
|
||||
# Step 2: Analyzing audio
|
||||
yield f"data: {json.dumps({'step': 2, 'status': 'loading', 'message': 'Analyzing audio frequencies...', 'progress': 30})}\n\n"
|
||||
time.sleep(1.0)
|
||||
|
||||
yield f"data: {json.dumps({'step': 2, 'status': 'complete', 'message': 'Frequency analysis complete', 'progress': 40})}\n\n"
|
||||
time.sleep(0.5)
|
||||
|
||||
# Step 3: Generating spectrogram
|
||||
yield f"data: {json.dumps({'step': 3, 'status': 'loading', 'message': 'Generating spectrogram image...', 'progress': 50})}\n\n"
|
||||
|
||||
print(f"[VISUALIZE] Starting spectrogram generation for {audio_path}")
|
||||
art_path = processor.generate_spectrogram(audio_path, min_pixels=min_pixels)
|
||||
print(f"[VISUALIZE] Spectrogram generated at {art_path}")
|
||||
|
||||
# Read the spectrogram image and encode as base64
|
||||
with open(art_path, 'rb') as img_file:
|
||||
spectrogram_b64 = base64.b64encode(img_file.read()).decode('utf-8')
|
||||
print(f"[VISUALIZE] Spectrogram base64 length: {len(spectrogram_b64)}")
|
||||
|
||||
yield f"data: {json.dumps({'step': 3, 'status': 'complete', 'message': 'Spectrogram generated!', 'progress': 70, 'spectrogramImage': f'data:image/png;base64,{spectrogram_b64}'})}\n\n"
|
||||
print("[VISUALIZE] Sent spectrogram image")
|
||||
time.sleep(2.0) # Pause to let user see the spectrogram
|
||||
|
||||
# Step 4: Embedding audio
|
||||
yield f"data: {json.dumps({'step': 4, 'status': 'loading', 'message': 'Embedding audio into image (LSB steganography)...', 'progress': 80})}\n\n"
|
||||
|
||||
final_path = processor.encode_stego(audio_path, art_path)
|
||||
|
||||
# Read the final image and encode as base64
|
||||
with open(final_path, 'rb') as img_file:
|
||||
final_b64 = base64.b64encode(img_file.read()).decode('utf-8')
|
||||
|
||||
yield f"data: {json.dumps({'step': 4, 'status': 'complete', 'message': 'Audio embedded successfully!', 'progress': 95, 'finalImage': f'data:image/png;base64,{final_b64}'})}\n\n"
|
||||
time.sleep(2.0) # Pause to let user see the final image
|
||||
|
||||
# Step 5: Complete - send the result URL
|
||||
result_id = os.path.basename(final_path)
|
||||
yield f"data: {json.dumps({'step': 5, 'status': 'complete', 'message': 'Process complete!', 'progress': 100, 'resultId': result_id})}\n\n"
|
||||
|
||||
except Exception as e:
|
||||
yield f"data: {json.dumps({'step': 0, 'status': 'error', 'message': str(e), 'progress': 0})}\n\n"
|
||||
finally:
|
||||
# Clean up intermediate files (but keep final)
|
||||
if art_path and art_path != final_path and os.path.exists(art_path):
|
||||
try: os.remove(art_path)
|
||||
except: pass
|
||||
if audio_path and os.path.exists(audio_path):
|
||||
try: os.remove(audio_path)
|
||||
except: pass
|
||||
|
||||
response = Response(generate_steps(), mimetype='text/event-stream')
|
||||
response.headers['Cache-Control'] = 'no-cache'
|
||||
response.headers['X-Accel-Buffering'] = 'no'
|
||||
response.headers['Connection'] = 'keep-alive'
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
if audio_path and os.path.exists(audio_path):
|
||||
try: os.remove(audio_path)
|
||||
except: pass
|
||||
return jsonify({"error": str(e)}), 500
|
||||
|
||||
|
||||
@app.route('/api/result/<result_id>', methods=['GET'])
|
||||
def get_result(result_id):
|
||||
"""Serve the result image by ID."""
|
||||
result_path = os.path.join(app.config['UPLOAD_FOLDER'], result_id)
|
||||
if os.path.exists(result_path):
|
||||
return send_file(result_path, mimetype='image/png', as_attachment=False)
|
||||
return jsonify({"error": "Result not found"}), 404
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Threaded=True is important for processing images without blocking
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import os
|
||||
import time
|
||||
import struct
|
||||
import math
|
||||
import numpy as np
|
||||
@@ -36,49 +37,90 @@ class AudioImageProcessor:
|
||||
return struct.pack(HEADER_FMT, signature, file_size, len(ext_bytes)) + ext_bytes
|
||||
|
||||
# --- Feature 1: Spectrogram Art ---
|
||||
def generate_spectrogram(self, audio_path):
|
||||
def generate_spectrogram(self, audio_path, min_pixels=0):
|
||||
"""Generates a visual spectrogram from audio."""
|
||||
try:
|
||||
import torch
|
||||
import torchaudio
|
||||
has_torch = True
|
||||
except ImportError:
|
||||
has_torch = False
|
||||
|
||||
if has_torch and torch.cuda.is_available():
|
||||
try:
|
||||
# GPU Accelerated Path
|
||||
device = "cuda"
|
||||
waveform, sr = torchaudio.load(audio_path)
|
||||
waveform = waveform.to(device)
|
||||
|
||||
# Create transformation
|
||||
# Mimic librosa defaults roughly: n_fft=2048, hop_length=512
|
||||
n_fft = 2048
|
||||
win_length = n_fft
|
||||
hop_length = 512
|
||||
n_mels = 128
|
||||
|
||||
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=sr,
|
||||
n_fft=n_fft,
|
||||
win_length=win_length,
|
||||
hop_length=hop_length,
|
||||
n_mels=n_mels,
|
||||
f_max=8000
|
||||
).to(device)
|
||||
|
||||
S = mel_spectrogram(waveform)
|
||||
S_dB = torchaudio.transforms.AmplitudeToDB()(S)
|
||||
|
||||
# Back to CPU for plotting
|
||||
S_dB = S_dB.cpu().numpy()[0] # Take first channel
|
||||
# Librosa display expects numpy
|
||||
except Exception as e:
|
||||
# Fallback to CPU/Librosa if any error occurs
|
||||
print(f"GPU processing failed, falling back to CPU: {e}")
|
||||
return self._generate_spectrogram_cpu(audio_path, min_pixels)
|
||||
else:
|
||||
return self._generate_spectrogram_cpu(audio_path, min_pixels)
|
||||
|
||||
# Plotting (Common)
|
||||
return self._plot_spectrogram(S_dB, sr, min_pixels)
|
||||
|
||||
def _generate_spectrogram_cpu(self, audio_path, min_pixels=0):
|
||||
y, sr = librosa.load(audio_path)
|
||||
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=256, fmax=8000)
|
||||
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
|
||||
S_dB = librosa.power_to_db(S, ref=np.max)
|
||||
|
||||
plt.figure(figsize=(12, 6))
|
||||
plt.axis('off')
|
||||
plt.margins(0, 0)
|
||||
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
||||
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
||||
return self._plot_spectrogram(S_dB, sr, min_pixels)
|
||||
|
||||
# 'magma' is a nice default, but you could parameterize this
|
||||
librosa.display.specshow(S_dB, sr=sr, fmax=8000, cmap='magma')
|
||||
def _plot_spectrogram(self, S_dB, sr, min_pixels=0):
|
||||
# Calculate DPI dynamically to ensure we have enough pixels for steganography
|
||||
dpi = 300
|
||||
if min_pixels > 0:
|
||||
# Figure is 12x6 inches. Area = 72 sq inches.
|
||||
# Total Pixels = 72 * dpi^2
|
||||
required_dpi = math.ceil((min_pixels / 72) ** 0.5)
|
||||
# Add a small buffer
|
||||
dpi = max(dpi, int(required_dpi * 1.05))
|
||||
|
||||
output_path = os.path.join(self.upload_folder, f"art_{os.path.basename(audio_path)}.png")
|
||||
plt.savefig(output_path, bbox_inches='tight', pad_inches=0, dpi=300)
|
||||
# Use exact dimensions without margins
|
||||
width_in = 12
|
||||
height_in = 6
|
||||
fig = plt.figure(figsize=(width_in, height_in))
|
||||
|
||||
# Add axes covering the entire figure [left, bottom, width, height]
|
||||
ax = plt.axes([0, 0, 1, 1], frameon=False)
|
||||
ax.set_axis_off()
|
||||
|
||||
# 'magma' is a nice default
|
||||
librosa.display.specshow(S_dB, sr=sr, fmax=8000, cmap='magma', ax=ax)
|
||||
|
||||
output_path = os.path.join(self.upload_folder, f"art_{int(time.time())}.png")
|
||||
|
||||
# specific DPI, no bbox_inches='tight' (which shrinks the image)
|
||||
plt.savefig(output_path, dpi=dpi)
|
||||
plt.close()
|
||||
return output_path
|
||||
|
||||
# --- Feature 2: Format Shift (Raw Data to Image) ---
|
||||
def encode_shift(self, file_path):
|
||||
file_data = self._get_bytes(file_path)
|
||||
file_size = len(file_data)
|
||||
|
||||
header = self._create_header(SIG_SHIFT, file_size, file_path)
|
||||
payload = header + file_data
|
||||
|
||||
# Calculate size
|
||||
pixels = math.ceil(len(payload) / 3)
|
||||
side = math.ceil(math.sqrt(pixels))
|
||||
padding = (side * side * 3) - len(payload)
|
||||
|
||||
# Pad and Reshape
|
||||
arr = np.frombuffer(payload, dtype=np.uint8)
|
||||
if padding > 0:
|
||||
arr = np.pad(arr, (0, padding), 'constant')
|
||||
|
||||
img = Image.fromarray(arr.reshape((side, side, 3)), 'RGB')
|
||||
|
||||
output_path = os.path.join(self.upload_folder, f"shift_{os.path.basename(file_path)}.png")
|
||||
img.save(output_path, "PNG")
|
||||
return output_path
|
||||
|
||||
|
||||
# --- Feature 3: Steganography (Embed in Host) ---
|
||||
def encode_stego(self, data_path, host_path):
|
||||
|
||||
@@ -4,3 +4,5 @@ numpy
|
||||
Pillow
|
||||
librosa
|
||||
matplotlib
|
||||
torch
|
||||
torchaudio
|
||||
|
||||
Reference in New Issue
Block a user