Code Update

This commit is contained in:
2026-01-07 04:09:56 +00:00
parent 585830103b
commit 983b548d7b
10 changed files with 13 additions and 158 deletions

View File

@@ -6,11 +6,9 @@ from flask_cors import CORS
from werkzeug.utils import secure_filename
from processor import AudioImageProcessor
# Serve the build folder from the parent directory
app = Flask(__name__, static_folder='../build', static_url_path='')
CORS(app) # Allow Svelte to communicate
CORS(app)
# Configuration
UPLOAD_FOLDER = os.path.join(os.getcwd(), 'uploads')
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
processor = AudioImageProcessor(UPLOAD_FOLDER)
@@ -21,29 +19,24 @@ def save_upload(file_obj):
file_obj.save(path)
return path
# --- Frontend Routes ---
@app.route('/')
def index():
return send_from_directory(app.static_folder, 'index.html')
@app.errorhandler(404)
def not_found(e):
# If the path starts with /api, return actual 404
if request.path.startswith('/api/'):
return jsonify({"error": "Not found"}), 404
# Otherwise return index.html for SPA routing
return send_from_directory(app.static_folder, 'index.html')
@app.route('/health', methods=['GET'])
def health():
return jsonify({"status": "ok", "max_mb": 40})
# --- Background Cleanup ---
import threading
def cleanup_task():
"""Background thread to clean up old files."""
expiration_seconds = 600 # 10 minutes
expiration_seconds = 600
while True:
try:
now = time.time()
@@ -51,7 +44,6 @@ def cleanup_task():
for filename in os.listdir(UPLOAD_FOLDER):
filepath = os.path.join(UPLOAD_FOLDER, filename)
if os.path.isfile(filepath):
# check creation time
if now - os.path.getctime(filepath) > expiration_seconds:
try:
os.remove(filepath)
@@ -61,16 +53,12 @@ def cleanup_task():
except Exception as e:
print(f"Cleanup Error: {e}")
time.sleep(60) # Run every minute
time.sleep(60)
# Start cleanup thread safely
if os.environ.get('WERKZEUG_RUN_MAIN') == 'true' or not os.environ.get('WERKZEUG_RUN_MAIN'):
# Simple check to try and avoid double threads in reloader, though not perfect
t = threading.Thread(target=cleanup_task, daemon=True)
t.start()
# --- Endpoint 1: Create Art (Optional: Embed Audio in it) ---
@app.route('/api/generate-art', methods=['POST'])
def generate_art():
if 'audio' not in request.files:
@@ -83,27 +71,19 @@ def generate_art():
art_path = None
try:
# 1. Save Audio
audio_path = save_upload(audio_file)
# 2. Generate Art
min_pixels = 0
if should_embed:
# Calculate required pixels: File Bytes * 8 (bits) / 3 (channels)
# Add 5% buffer for header and safety
file_size = os.path.getsize(audio_path)
min_pixels = int((file_size * 8 / 3) * 1.05)
art_path = processor.generate_spectrogram(audio_path, min_pixels=min_pixels)
# 3. If Embed requested, run Steganography immediately using the art as host
final_path = art_path
if should_embed:
# art_path becomes the host, audio_path is the data
final_path = processor.encode_stego(audio_path, art_path)
# If we created a new stego image, the pure art_path is intermediate (and audio is input)
# We can delete art_path now if it's different (it is)
if art_path != final_path:
try: os.remove(art_path)
except: pass
@@ -115,14 +95,10 @@ def generate_art():
except Exception as e:
return jsonify({"error": str(e)}), 500
finally:
# Cleanup Inputs
if audio_path and os.path.exists(audio_path):
try: os.remove(audio_path)
except: pass
# --- Endpoint 3: Steganography (Audio + Custom Host) ---
@app.route('/api/hide', methods=['POST'])
def hide_data():
if 'data' not in request.files or 'host' not in request.files:
@@ -148,7 +124,6 @@ def hide_data():
try: os.remove(host_path)
except: pass
# --- Endpoint 4: Decode (Universal) ---
@app.route('/api/decode', methods=['POST'])
def decode():
if 'image' not in request.files:
@@ -159,7 +134,6 @@ def decode():
img_path = save_upload(request.files['image'])
restored_path = processor.decode_image(img_path)
# Determine mimetype based on extension for browser friendliness
filename = os.path.basename(restored_path)
return send_file(restored_path, as_attachment=True, download_name=filename)
except ValueError as e:
@@ -171,13 +145,8 @@ def decode():
try: os.remove(img_path)
except: pass
# --- Endpoint 4: Visualizer SSE Stream ---
@app.route('/api/visualize', methods=['POST'])
def visualize():
"""
SSE endpoint that streams the spectrogram generation process.
Returns step-by-step updates for visualization.
"""
if 'audio' not in request.files:
return jsonify({"error": "No audio file provided"}), 400
@@ -196,56 +165,48 @@ def visualize():
try:
import base64
# Step 1: Audio loaded
yield f"data: {json.dumps({'step': 1, 'status': 'loading', 'message': 'Loading audio file...', 'progress': 10})}\n\n"
time.sleep(0.8)
yield f"data: {json.dumps({'step': 1, 'status': 'complete', 'message': f'Audio loaded: {audio_file.filename}', 'progress': 20, 'fileSize': file_size})}\n\n"
time.sleep(0.5)
# Step 2: Analyzing audio
yield f"data: {json.dumps({'step': 2, 'status': 'loading', 'message': 'Analyzing audio frequencies...', 'progress': 30})}\n\n"
time.sleep(1.0)
yield f"data: {json.dumps({'step': 2, 'status': 'complete', 'message': 'Frequency analysis complete', 'progress': 40})}\n\n"
time.sleep(0.5)
# Step 3: Generating spectrogram
yield f"data: {json.dumps({'step': 3, 'status': 'loading', 'message': 'Generating spectrogram image...', 'progress': 50})}\n\n"
print(f"[VISUALIZE] Starting spectrogram generation for {audio_path}")
art_path = processor.generate_spectrogram(audio_path, min_pixels=min_pixels)
print(f"[VISUALIZE] Spectrogram generated at {art_path}")
# Read the spectrogram image and encode as base64
with open(art_path, 'rb') as img_file:
spectrogram_b64 = base64.b64encode(img_file.read()).decode('utf-8')
print(f"[VISUALIZE] Spectrogram base64 length: {len(spectrogram_b64)}")
yield f"data: {json.dumps({'step': 3, 'status': 'complete', 'message': 'Spectrogram generated!', 'progress': 70, 'spectrogramImage': f'data:image/png;base64,{spectrogram_b64}'})}\n\n"
print("[VISUALIZE] Sent spectrogram image")
time.sleep(2.0) # Pause to let user see the spectrogram
time.sleep(2.0)
# Step 4: Embedding audio
yield f"data: {json.dumps({'step': 4, 'status': 'loading', 'message': 'Embedding audio into image (LSB steganography)...', 'progress': 80})}\n\n"
final_path = processor.encode_stego(audio_path, art_path)
# Read the final image and encode as base64
with open(final_path, 'rb') as img_file:
final_b64 = base64.b64encode(img_file.read()).decode('utf-8')
yield f"data: {json.dumps({'step': 4, 'status': 'complete', 'message': 'Audio embedded successfully!', 'progress': 95, 'finalImage': f'data:image/png;base64,{final_b64}'})}\n\n"
time.sleep(2.0) # Pause to let user see the final image
time.sleep(2.0)
# Step 5: Complete - send the result URL
result_id = os.path.basename(final_path)
yield f"data: {json.dumps({'step': 5, 'status': 'complete', 'message': 'Process complete!', 'progress': 100, 'resultId': result_id})}\n\n"
except Exception as e:
yield f"data: {json.dumps({'step': 0, 'status': 'error', 'message': str(e), 'progress': 0})}\n\n"
finally:
# Clean up intermediate files (but keep final)
if art_path and art_path != final_path and os.path.exists(art_path):
try: os.remove(art_path)
except: pass
@@ -265,16 +226,12 @@ def visualize():
except: pass
return jsonify({"error": str(e)}), 500
@app.route('/api/result/<result_id>', methods=['GET'])
def get_result(result_id):
"""Serve the result image by ID."""
result_path = os.path.join(app.config['UPLOAD_FOLDER'], result_id)
if os.path.exists(result_path):
return send_file(result_path, mimetype='image/png', as_attachment=False)
return jsonify({"error": "Result not found"}), 404
if __name__ == '__main__':
# Threaded=True is important for processing images without blocking
app.run(debug=True, port=5000, threaded=True)

View File

@@ -6,12 +6,10 @@ import numpy as np
import librosa
import librosa.display
import matplotlib
# Set backend to Agg (Anti-Grain Geometry) to render without a GUI (essential for servers)
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from PIL import Image
# --- Constants ---
MAX_MB = 40
SIG_SHIFT = b'B2I!'
SIG_STEGO = b'B2S!'
@@ -25,7 +23,6 @@ class AudioImageProcessor:
os.makedirs(upload_folder, exist_ok=True)
def _get_bytes(self, path):
"""Helper to safely read bytes"""
if os.path.getsize(path) > (MAX_MB * 1024 * 1024):
raise ValueError("File too large (Max 40MB)")
with open(path, 'rb') as f:
@@ -36,9 +33,7 @@ class AudioImageProcessor:
ext_bytes = ext.encode('utf-8')
return struct.pack(HEADER_FMT, signature, file_size, len(ext_bytes)) + ext_bytes
# --- Feature 1: Spectrogram Art ---
def generate_spectrogram(self, audio_path, min_pixels=0):
"""Generates a visual spectrogram from audio."""
try:
import torch
import torchaudio
@@ -48,13 +43,10 @@ class AudioImageProcessor:
if has_torch and torch.cuda.is_available():
try:
# GPU Accelerated Path
device = "cuda"
waveform, sr = torchaudio.load(audio_path)
waveform = waveform.to(device)
# Create transformation
# Mimic librosa defaults roughly: n_fft=2048, hop_length=512
n_fft = 2048
win_length = n_fft
hop_length = 512
@@ -72,17 +64,13 @@ class AudioImageProcessor:
S = mel_spectrogram(waveform)
S_dB = torchaudio.transforms.AmplitudeToDB()(S)
# Back to CPU for plotting
S_dB = S_dB.cpu().numpy()[0] # Take first channel
# Librosa display expects numpy
S_dB = S_dB.cpu().numpy()[0]
except Exception as e:
# Fallback to CPU/Librosa if any error occurs
print(f"GPU processing failed, falling back to CPU: {e}")
return self._generate_spectrogram_cpu(audio_path, min_pixels)
else:
return self._generate_spectrogram_cpu(audio_path, min_pixels)
# Plotting (Common)
return self._plot_spectrogram(S_dB, sr, min_pixels)
def _generate_spectrogram_cpu(self, audio_path, min_pixels=0):
@@ -92,44 +80,31 @@ class AudioImageProcessor:
return self._plot_spectrogram(S_dB, sr, min_pixels)
def _plot_spectrogram(self, S_dB, sr, min_pixels=0):
# Calculate DPI dynamically to ensure we have enough pixels for steganography
dpi = 300
if min_pixels > 0:
# Figure is 12x6 inches. Area = 72 sq inches.
# Total Pixels = 72 * dpi^2
required_dpi = math.ceil((min_pixels / 72) ** 0.5)
# Add a small buffer
dpi = max(dpi, int(required_dpi * 1.05))
# Use exact dimensions without margins
width_in = 12
height_in = 6
fig = plt.figure(figsize=(width_in, height_in))
# Add axes covering the entire figure [left, bottom, width, height]
ax = plt.axes([0, 0, 1, 1], frameon=False)
ax.set_axis_off()
# 'magma' is a nice default
librosa.display.specshow(S_dB, sr=sr, fmax=8000, cmap='magma', ax=ax)
output_path = os.path.join(self.upload_folder, f"art_{int(time.time())}.png")
# specific DPI, no bbox_inches='tight' (which shrinks the image)
plt.savefig(output_path, dpi=dpi)
plt.close()
return output_path
# --- Feature 3: Steganography (Embed in Host) ---
def encode_stego(self, data_path, host_path):
# 1. Prepare Data
file_data = self._get_bytes(data_path)
header = self._create_header(SIG_STEGO, len(file_data), data_path)
payload_bits = np.unpackbits(np.frombuffer(header + file_data, dtype=np.uint8))
# 2. Prepare Host
host = Image.open(host_path).convert('RGB')
host_arr = np.array(host)
flat_host = host_arr.flatten()
@@ -137,7 +112,6 @@ class AudioImageProcessor:
if len(payload_bits) > len(flat_host):
raise ValueError(f"Host image too small. Need {len(payload_bits)/3/1e6:.2f} MP.")
# 3. Embed (LSB)
padded_bits = np.pad(payload_bits, (0, len(flat_host) - len(payload_bits)), 'constant')
embedded_flat = (flat_host & 0xFE) + padded_bits
@@ -147,19 +121,16 @@ class AudioImageProcessor:
embedded_img.save(output_path, "PNG")
return output_path
# --- Feature 4: Universal Decoder ---
def decode_image(self, image_path):
img = Image.open(image_path).convert('RGB')
flat_bytes = np.array(img).flatten()
# Strategy A: Check for Shift Signature (Raw Bytes)
try:
sig = struct.unpack('>4s', flat_bytes[:4])[0]
if sig == SIG_SHIFT:
return self._extract(flat_bytes, image_path, is_bits=False)
except: pass
# Strategy B: Check for Stego Signature (LSB)
try:
sample_bytes = np.packbits(flat_bytes[:300] & 1)
sig = struct.unpack('>4s', sample_bytes[:4])[0]