import os import struct import math import numpy as np import librosa import librosa.display import matplotlib # Set backend to Agg (Anti-Grain Geometry) to render without a GUI (essential for servers) matplotlib.use('Agg') import matplotlib.pyplot as plt from PIL import Image # --- Constants --- MAX_MB = 40 SIG_SHIFT = b'B2I!' SIG_STEGO = b'B2S!' HEADER_FMT = '>4sQB' HEADER_LEN = struct.calcsize(HEADER_FMT) Image.MAX_IMAGE_PIXELS = 500 * 1024 * 1024 class AudioImageProcessor: def __init__(self, upload_folder): self.upload_folder = upload_folder os.makedirs(upload_folder, exist_ok=True) def _get_bytes(self, path): """Helper to safely read bytes""" if os.path.getsize(path) > (MAX_MB * 1024 * 1024): raise ValueError("File too large (Max 40MB)") with open(path, 'rb') as f: return f.read() def _create_header(self, signature, file_size, filepath): _, ext = os.path.splitext(filepath) ext_bytes = ext.encode('utf-8') return struct.pack(HEADER_FMT, signature, file_size, len(ext_bytes)) + ext_bytes # --- Feature 1: Spectrogram Art --- def generate_spectrogram(self, audio_path): """Generates a visual spectrogram from audio.""" y, sr = librosa.load(audio_path) S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=256, fmax=8000) S_dB = librosa.power_to_db(S, ref=np.max) plt.figure(figsize=(12, 6)) plt.axis('off') plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) # 'magma' is a nice default, but you could parameterize this librosa.display.specshow(S_dB, sr=sr, fmax=8000, cmap='magma') output_path = os.path.join(self.upload_folder, f"art_{os.path.basename(audio_path)}.png") plt.savefig(output_path, bbox_inches='tight', pad_inches=0, dpi=300) plt.close() return output_path # --- Feature 2: Format Shift (Raw Data to Image) --- def encode_shift(self, file_path): file_data = self._get_bytes(file_path) file_size = len(file_data) header = self._create_header(SIG_SHIFT, file_size, file_path) payload = header + file_data # Calculate size pixels = math.ceil(len(payload) / 3) side = math.ceil(math.sqrt(pixels)) padding = (side * side * 3) - len(payload) # Pad and Reshape arr = np.frombuffer(payload, dtype=np.uint8) if padding > 0: arr = np.pad(arr, (0, padding), 'constant') img = Image.fromarray(arr.reshape((side, side, 3)), 'RGB') output_path = os.path.join(self.upload_folder, f"shift_{os.path.basename(file_path)}.png") img.save(output_path, "PNG") return output_path # --- Feature 3: Steganography (Embed in Host) --- def encode_stego(self, data_path, host_path): # 1. Prepare Data file_data = self._get_bytes(data_path) header = self._create_header(SIG_STEGO, len(file_data), data_path) payload_bits = np.unpackbits(np.frombuffer(header + file_data, dtype=np.uint8)) # 2. Prepare Host host = Image.open(host_path).convert('RGB') host_arr = np.array(host) flat_host = host_arr.flatten() if len(payload_bits) > len(flat_host): raise ValueError(f"Host image too small. Need {len(payload_bits)/3/1e6:.2f} MP.") # 3. Embed (LSB) padded_bits = np.pad(payload_bits, (0, len(flat_host) - len(payload_bits)), 'constant') embedded_flat = (flat_host & 0xFE) + padded_bits embedded_img = Image.fromarray(embedded_flat.reshape(host_arr.shape), 'RGB') output_path = os.path.join(self.upload_folder, f"stego_{os.path.basename(data_path)}.png") embedded_img.save(output_path, "PNG") return output_path # --- Feature 4: Universal Decoder --- def decode_image(self, image_path): img = Image.open(image_path).convert('RGB') flat_bytes = np.array(img).flatten() # Strategy A: Check for Shift Signature (Raw Bytes) try: sig = struct.unpack('>4s', flat_bytes[:4])[0] if sig == SIG_SHIFT: return self._extract(flat_bytes, image_path, is_bits=False) except: pass # Strategy B: Check for Stego Signature (LSB) try: sample_bytes = np.packbits(flat_bytes[:300] & 1) sig = struct.unpack('>4s', sample_bytes[:4])[0] if sig == SIG_STEGO: all_bytes = np.packbits(flat_bytes & 1) return self._extract(all_bytes, image_path, is_bits=True) except: pass raise ValueError("No encoded data found in this image.") def _extract(self, byte_arr, original_path, is_bits): sig, size, ext_len = struct.unpack(HEADER_FMT, byte_arr[:HEADER_LEN]) ext = byte_arr[HEADER_LEN:HEADER_LEN+ext_len].tobytes().decode('utf-8') data = byte_arr[HEADER_LEN+ext_len : HEADER_LEN+ext_len+size] tag = "decoded" out_name = f"{os.path.splitext(os.path.basename(original_path))[0]}_{tag}{ext}" out_path = os.path.join(self.upload_folder, out_name) with open(out_path, 'wb') as f: f.write(data.tobytes()) return out_path