Code reorganization and Drone Logic Update
This commit is contained in:
474
legacy/simulation_host.py
Normal file
474
legacy/simulation_host.py
Normal file
@@ -0,0 +1,474 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Drone Simulation Host - PyBullet physics simulation (GPS-Denied).
|
||||
Includes downward camera for drone vision.
|
||||
Communicates via UDP on port 5555 for commands, 5556 for telemetry.
|
||||
"""
|
||||
|
||||
import base64
|
||||
import json
|
||||
import math
|
||||
import socket
|
||||
import time
|
||||
from typing import Dict, Any, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pybullet as p
|
||||
import pybullet_data
|
||||
|
||||
# Load configuration
|
||||
try:
|
||||
from config import DRONE, ROVER, CAMERA, PHYSICS, NETWORK
|
||||
CONFIG_LOADED = True
|
||||
except ImportError:
|
||||
CONFIG_LOADED = False
|
||||
DRONE = {"mass": 1.0, "size": (0.3, 0.3, 0.1), "color": (0.8, 0.1, 0.1, 1.0),
|
||||
"start_position": (0.0, 0.0, 5.0), "thrust_scale": 15.0,
|
||||
"pitch_torque_scale": 2.0, "roll_torque_scale": 2.0, "yaw_torque_scale": 1.0}
|
||||
ROVER = {"size": (1.0, 1.0, 0.3), "color": (0.2, 0.6, 0.2, 1.0),
|
||||
"start_position": (0.0, 0.0, 0.15)}
|
||||
CAMERA = {"width": 320, "height": 240, "fov": 60.0, "near_clip": 0.1, "far_clip": 20.0}
|
||||
PHYSICS = {"gravity": -9.81, "timestep": 1/240, "telemetry_rate": 24}
|
||||
NETWORK = {"host": "0.0.0.0", "command_port": 5555, "telemetry_port": 5556}
|
||||
|
||||
|
||||
class DroneSimulator:
|
||||
"""PyBullet-based drone simulation with camera."""
|
||||
|
||||
def __init__(self):
|
||||
print("=" * 60)
|
||||
print("Drone Simulation Host (GPS-Denied + Camera)")
|
||||
if CONFIG_LOADED:
|
||||
print(" Configuration loaded from config.py")
|
||||
print("=" * 60)
|
||||
|
||||
# Load from config
|
||||
self._udp_host = NETWORK.get("host", "0.0.0.0")
|
||||
self._udp_port = NETWORK.get("command_port", 5555)
|
||||
self._telemetry_port = NETWORK.get("telemetry_port", 5556)
|
||||
|
||||
self._gravity = PHYSICS.get("gravity", -9.81)
|
||||
self._timestep = PHYSICS.get("timestep", 1/240)
|
||||
self._telemetry_interval = int(240 / PHYSICS.get("telemetry_rate", 24))
|
||||
|
||||
self._drone_mass = DRONE.get("mass", 1.0)
|
||||
self._drone_size = DRONE.get("size", (0.3, 0.3, 0.1))
|
||||
self._drone_start = DRONE.get("start_position", (0.0, 0.0, 5.0))
|
||||
self._drone_color = DRONE.get("color", (0.8, 0.1, 0.1, 1.0))
|
||||
self._thrust_scale = DRONE.get("thrust_scale", 15.0)
|
||||
self._pitch_torque_scale = DRONE.get("pitch_torque_scale", 2.0)
|
||||
self._roll_torque_scale = DRONE.get("roll_torque_scale", 2.0)
|
||||
self._yaw_torque_scale = DRONE.get("yaw_torque_scale", 1.0)
|
||||
self._hover_thrust = self._drone_mass * abs(self._gravity)
|
||||
|
||||
self._rover_size = ROVER.get("size", (1.0, 1.0, 0.3))
|
||||
self._rover_start = list(ROVER.get("start_position", (0.0, 0.0, 0.15)))
|
||||
self._rover_color = ROVER.get("color", (0.2, 0.6, 0.2, 1.0))
|
||||
|
||||
self._camera_width = CAMERA.get("width", 320)
|
||||
self._camera_height = CAMERA.get("height", 240)
|
||||
self._camera_fov = CAMERA.get("fov", 60.0)
|
||||
self._camera_near = CAMERA.get("near_clip", 0.1)
|
||||
self._camera_far = CAMERA.get("far_clip", 20.0)
|
||||
self._camera_interval = 5
|
||||
|
||||
self._running = True
|
||||
self._step_count = 0
|
||||
self._camera_frame_count = 0
|
||||
self._last_command: Dict[str, float] = {
|
||||
'thrust': 0.0, 'pitch': 0.0, 'roll': 0.0, 'yaw': 0.0
|
||||
}
|
||||
|
||||
self._rover_pos = list(self._rover_start)
|
||||
self._last_camera_image = None
|
||||
|
||||
self._init_physics()
|
||||
self._init_objects()
|
||||
self._init_network()
|
||||
|
||||
print("Simulation Ready! (GPS-Denied Mode)")
|
||||
print(" Sensors: IMU, Altimeter, Camera")
|
||||
print(f" Camera: {self._camera_width}x{self._camera_height} @ {self._camera_fov}° FOV")
|
||||
print(f" Listening on UDP port {self._udp_port}")
|
||||
print("=" * 60)
|
||||
|
||||
def _init_physics(self) -> None:
|
||||
print("Initializing PyBullet physics engine...")
|
||||
self._physics_client = p.connect(p.GUI)
|
||||
p.setGravity(0, 0, self._gravity)
|
||||
p.setTimeStep(self._timestep)
|
||||
p.resetDebugVisualizerCamera(
|
||||
cameraDistance=8.0,
|
||||
cameraYaw=45,
|
||||
cameraPitch=-30,
|
||||
cameraTargetPosition=[0, 0, 1]
|
||||
)
|
||||
p.setAdditionalSearchPath(pybullet_data.getDataPath())
|
||||
print(" Physics engine initialized (240 Hz)")
|
||||
|
||||
def _init_objects(self) -> None:
|
||||
print("Creating simulation objects...")
|
||||
|
||||
self._ground_id = p.loadURDF("plane.urdf")
|
||||
print(" Ground plane loaded")
|
||||
|
||||
rover_collision = p.createCollisionShape(
|
||||
p.GEOM_BOX,
|
||||
halfExtents=[s/2 for s in self._rover_size]
|
||||
)
|
||||
rover_visual = p.createVisualShape(
|
||||
p.GEOM_BOX,
|
||||
halfExtents=[s/2 for s in self._rover_size],
|
||||
rgbaColor=list(self._rover_color)
|
||||
)
|
||||
self._rover_id = p.createMultiBody(
|
||||
baseMass=0,
|
||||
baseCollisionShapeIndex=rover_collision,
|
||||
baseVisualShapeIndex=rover_visual,
|
||||
basePosition=self._rover_start
|
||||
)
|
||||
print(f" Rover created at position {self._rover_start}")
|
||||
|
||||
self._create_landing_pad_marker()
|
||||
|
||||
drone_collision = p.createCollisionShape(
|
||||
p.GEOM_BOX,
|
||||
halfExtents=[s/2 for s in self._drone_size]
|
||||
)
|
||||
drone_visual = p.createVisualShape(
|
||||
p.GEOM_BOX,
|
||||
halfExtents=[s/2 for s in self._drone_size],
|
||||
rgbaColor=list(self._drone_color)
|
||||
)
|
||||
self._drone_id = p.createMultiBody(
|
||||
baseMass=self._drone_mass,
|
||||
baseCollisionShapeIndex=drone_collision,
|
||||
baseVisualShapeIndex=drone_visual,
|
||||
basePosition=self._drone_start
|
||||
)
|
||||
p.changeDynamics(
|
||||
self._drone_id, -1,
|
||||
linearDamping=0.1,
|
||||
angularDamping=0.5
|
||||
)
|
||||
print(f" Drone created at position {self._drone_start}")
|
||||
|
||||
def _create_landing_pad_marker(self) -> None:
|
||||
marker_height = self._rover_start[2] + self._rover_size[2] / 2 + 0.01
|
||||
h_size = 0.3
|
||||
line_color = [1, 1, 1]
|
||||
line_width = 3
|
||||
|
||||
p.addUserDebugLine(
|
||||
[-h_size, 0, marker_height],
|
||||
[h_size, 0, marker_height],
|
||||
lineColorRGB=line_color,
|
||||
lineWidth=line_width
|
||||
)
|
||||
p.addUserDebugLine(
|
||||
[-h_size, -h_size, marker_height],
|
||||
[-h_size, h_size, marker_height],
|
||||
lineColorRGB=line_color,
|
||||
lineWidth=line_width
|
||||
)
|
||||
p.addUserDebugLine(
|
||||
[h_size, -h_size, marker_height],
|
||||
[h_size, h_size, marker_height],
|
||||
lineColorRGB=line_color,
|
||||
lineWidth=line_width
|
||||
)
|
||||
|
||||
def _init_network(self) -> None:
|
||||
print("Initializing network...")
|
||||
self._socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||
self._socket.settimeout(0.001)
|
||||
self._socket.bind((self._udp_host, self._udp_port))
|
||||
self._controller_addr: Optional[Tuple[str, int]] = None
|
||||
print(f" UDP socket bound to {self._udp_host}:{self._udp_port}")
|
||||
|
||||
def run(self) -> None:
|
||||
print("\nStarting simulation loop...")
|
||||
print("Press Ctrl+C to exit\n")
|
||||
|
||||
try:
|
||||
while self._running:
|
||||
loop_start = time.time()
|
||||
|
||||
if not p.isConnected():
|
||||
print("GUI window closed, exiting...")
|
||||
break
|
||||
|
||||
self._receive_commands()
|
||||
self._apply_drone_controls()
|
||||
p.stepSimulation()
|
||||
self._step_count += 1
|
||||
|
||||
if self._step_count % self._telemetry_interval == 0:
|
||||
self._send_telemetry()
|
||||
|
||||
elapsed = time.time() - loop_start
|
||||
sleep_time = self._timestep - elapsed
|
||||
if sleep_time > 0:
|
||||
time.sleep(sleep_time)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nKeyboard interrupt received")
|
||||
finally:
|
||||
self.shutdown()
|
||||
|
||||
def _receive_commands(self) -> None:
|
||||
try:
|
||||
data, addr = self._socket.recvfrom(65535)
|
||||
self._controller_addr = (addr[0], self._telemetry_port)
|
||||
|
||||
try:
|
||||
command = json.loads(data.decode('utf-8'))
|
||||
|
||||
# Drone control commands
|
||||
self._last_command = {
|
||||
'thrust': float(command.get('thrust', 0.0)),
|
||||
'pitch': float(command.get('pitch', 0.0)),
|
||||
'roll': float(command.get('roll', 0.0)),
|
||||
'yaw': float(command.get('yaw', 0.0))
|
||||
}
|
||||
|
||||
# Rover position update (if provided)
|
||||
if 'rover' in command:
|
||||
rover_data = command['rover']
|
||||
new_x = float(rover_data.get('x', self._rover_pos[0]))
|
||||
new_y = float(rover_data.get('y', self._rover_pos[1]))
|
||||
new_z = float(rover_data.get('z', self._rover_pos[2]))
|
||||
self._rover_pos = [new_x, new_y, new_z]
|
||||
p.resetBasePositionAndOrientation(
|
||||
self._rover_id,
|
||||
self._rover_pos,
|
||||
[0, 0, 0, 1]
|
||||
)
|
||||
|
||||
except (json.JSONDecodeError, ValueError) as e:
|
||||
print(f"Invalid command received: {e}")
|
||||
|
||||
except socket.timeout:
|
||||
pass
|
||||
except socket.error as e:
|
||||
print(f"Socket error: {e}")
|
||||
|
||||
def _apply_drone_controls(self) -> None:
|
||||
pos, orn = p.getBasePositionAndOrientation(self._drone_id)
|
||||
rot_matrix = p.getMatrixFromQuaternion(orn)
|
||||
local_up = [rot_matrix[2], rot_matrix[5], rot_matrix[8]]
|
||||
|
||||
thrust_command = self._last_command['thrust']
|
||||
total_thrust = self._hover_thrust + (thrust_command * self._thrust_scale)
|
||||
total_thrust = max(0, total_thrust)
|
||||
|
||||
thrust_force = [
|
||||
local_up[0] * total_thrust,
|
||||
local_up[1] * total_thrust,
|
||||
local_up[2] * total_thrust
|
||||
]
|
||||
|
||||
p.applyExternalForce(
|
||||
self._drone_id, -1,
|
||||
forceObj=thrust_force,
|
||||
posObj=pos,
|
||||
flags=p.WORLD_FRAME
|
||||
)
|
||||
|
||||
pitch_torque = self._last_command['pitch'] * self._pitch_torque_scale
|
||||
roll_torque = self._last_command['roll'] * self._roll_torque_scale
|
||||
yaw_torque = self._last_command['yaw'] * self._yaw_torque_scale
|
||||
|
||||
p.applyExternalTorque(
|
||||
self._drone_id, -1,
|
||||
torqueObj=[pitch_torque, roll_torque, yaw_torque],
|
||||
flags=p.LINK_FRAME
|
||||
)
|
||||
|
||||
def _capture_camera_image(self) -> Optional[str]:
|
||||
"""Capture image from drone's downward-facing camera. Returns base64 encoded JPEG."""
|
||||
pos, orn = p.getBasePositionAndOrientation(self._drone_id)
|
||||
euler = p.getEulerFromQuaternion(orn)
|
||||
|
||||
target_pos = [pos[0], pos[1], 0]
|
||||
|
||||
view_matrix = p.computeViewMatrix(
|
||||
cameraEyePosition=pos,
|
||||
cameraTargetPosition=target_pos,
|
||||
cameraUpVector=[math.cos(euler[2]), math.sin(euler[2]), 0]
|
||||
)
|
||||
|
||||
aspect = self._camera_width / self._camera_height
|
||||
projection_matrix = p.computeProjectionMatrixFOV(
|
||||
fov=self._camera_fov,
|
||||
aspect=aspect,
|
||||
nearVal=self._camera_near,
|
||||
farVal=self._camera_far
|
||||
)
|
||||
|
||||
_, _, rgb, _, _ = p.getCameraImage(
|
||||
width=self._camera_width,
|
||||
height=self._camera_height,
|
||||
viewMatrix=view_matrix,
|
||||
projectionMatrix=projection_matrix,
|
||||
renderer=p.ER_BULLET_HARDWARE_OPENGL
|
||||
)
|
||||
|
||||
image = np.array(rgb, dtype=np.uint8).reshape(
|
||||
self._camera_height, self._camera_width, 4
|
||||
)[:, :, :3]
|
||||
|
||||
# Encode as base64 for transmission
|
||||
try:
|
||||
from PIL import Image
|
||||
import io
|
||||
pil_img = Image.fromarray(image)
|
||||
buffer = io.BytesIO()
|
||||
pil_img.save(buffer, format='JPEG', quality=70)
|
||||
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
except ImportError:
|
||||
# Return raw RGB values as base64 if PIL not available
|
||||
return base64.b64encode(image.tobytes()).decode('utf-8')
|
||||
|
||||
def _get_landing_pad_detection(self) -> Optional[Dict[str, float]]:
|
||||
"""Simulate downward camera detecting landing pad."""
|
||||
drone_pos, drone_orn = p.getBasePositionAndOrientation(self._drone_id)
|
||||
rover_pos, _ = p.getBasePositionAndOrientation(self._rover_id)
|
||||
|
||||
dx = rover_pos[0] - drone_pos[0]
|
||||
dy = rover_pos[1] - drone_pos[1]
|
||||
dz = rover_pos[2] - drone_pos[2]
|
||||
|
||||
horizontal_dist = math.sqrt(dx**2 + dy**2)
|
||||
vertical_dist = -dz
|
||||
|
||||
if vertical_dist <= 0 or vertical_dist > 10.0:
|
||||
return None
|
||||
|
||||
fov_rad = math.radians(self._camera_fov / 2)
|
||||
max_horizontal = vertical_dist * math.tan(fov_rad)
|
||||
|
||||
if horizontal_dist > max_horizontal:
|
||||
return None
|
||||
|
||||
rot_matrix = p.getMatrixFromQuaternion(drone_orn)
|
||||
body_x = [rot_matrix[0], rot_matrix[3], rot_matrix[6]]
|
||||
body_y = [rot_matrix[1], rot_matrix[4], rot_matrix[7]]
|
||||
|
||||
relative_x = dx * body_x[0] + dy * body_x[1] + dz * body_x[2]
|
||||
relative_y = dx * body_y[0] + dy * body_y[1] + dz * body_y[2]
|
||||
|
||||
angle = math.atan2(horizontal_dist, vertical_dist)
|
||||
confidence = max(0.0, 1.0 - (angle / fov_rad))
|
||||
confidence *= max(0.0, 1.0 - (vertical_dist / 10.0))
|
||||
|
||||
return {
|
||||
"relative_x": round(relative_x, 4),
|
||||
"relative_y": round(relative_y, 4),
|
||||
"distance": round(vertical_dist, 4),
|
||||
"confidence": round(confidence, 4)
|
||||
}
|
||||
|
||||
def _send_telemetry(self) -> None:
|
||||
if self._controller_addr is None:
|
||||
return
|
||||
|
||||
pos, orn = p.getBasePositionAndOrientation(self._drone_id)
|
||||
vel, ang_vel = p.getBaseVelocity(self._drone_id)
|
||||
euler = p.getEulerFromQuaternion(orn)
|
||||
landed_on_rover = self._check_landing()
|
||||
|
||||
pad_detection = self._get_landing_pad_detection()
|
||||
|
||||
# Capture camera image periodically
|
||||
self._camera_frame_count += 1
|
||||
camera_image = None
|
||||
|
||||
if self._camera_frame_count >= self._camera_interval:
|
||||
self._camera_frame_count = 0
|
||||
camera_image = self._capture_camera_image()
|
||||
|
||||
telemetry = {
|
||||
"imu": {
|
||||
"orientation": {
|
||||
"roll": round(euler[0], 4),
|
||||
"pitch": round(euler[1], 4),
|
||||
"yaw": round(euler[2], 4)
|
||||
},
|
||||
"angular_velocity": {
|
||||
"x": round(ang_vel[0], 4),
|
||||
"y": round(ang_vel[1], 4),
|
||||
"z": round(ang_vel[2], 4)
|
||||
},
|
||||
"linear_acceleration": {
|
||||
"x": 0.0,
|
||||
"y": 0.0,
|
||||
"z": round(-self._gravity, 4)
|
||||
}
|
||||
},
|
||||
"altimeter": {
|
||||
"altitude": round(pos[2], 4),
|
||||
"vertical_velocity": round(vel[2], 4)
|
||||
},
|
||||
"velocity": {
|
||||
"x": round(vel[0], 4),
|
||||
"y": round(vel[1], 4),
|
||||
"z": round(vel[2], 4)
|
||||
},
|
||||
"landing_pad": pad_detection,
|
||||
"camera": {
|
||||
"width": self._camera_width,
|
||||
"height": self._camera_height,
|
||||
"fov": self._camera_fov,
|
||||
"image": camera_image # Base64 encoded JPEG (or None)
|
||||
},
|
||||
"landed": landed_on_rover,
|
||||
"timestamp": round(self._step_count * self._timestep, 4)
|
||||
}
|
||||
|
||||
try:
|
||||
json_data = json.dumps(telemetry).encode('utf-8')
|
||||
self._socket.sendto(json_data, self._controller_addr)
|
||||
except socket.error as e:
|
||||
print(f"Failed to send telemetry: {e}")
|
||||
|
||||
def _check_landing(self) -> bool:
|
||||
contact_points = p.getContactPoints(
|
||||
bodyA=self._drone_id,
|
||||
bodyB=self._rover_id
|
||||
)
|
||||
return len(contact_points) > 0
|
||||
|
||||
def shutdown(self) -> None:
|
||||
print("\nShutting down simulation...")
|
||||
self._running = False
|
||||
|
||||
try:
|
||||
self._socket.close()
|
||||
print(" Socket closed")
|
||||
except socket.error:
|
||||
pass
|
||||
|
||||
if p.isConnected():
|
||||
p.disconnect()
|
||||
print(" PyBullet disconnected")
|
||||
|
||||
print("Shutdown complete")
|
||||
|
||||
|
||||
def main():
|
||||
print("\n" + "=" * 60)
|
||||
print(" DRONE LANDING SIMULATION (GPS-DENIED + CAMERA)")
|
||||
print("=" * 60 + "\n")
|
||||
|
||||
try:
|
||||
simulator = DroneSimulator()
|
||||
simulator.run()
|
||||
except Exception as e:
|
||||
print(f"Fatal error: {e}")
|
||||
raise
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user