This commit is contained in:
BGV
2025-03-30 03:31:36 -04:00
2 changed files with 183 additions and 70 deletions

View File

@@ -25,6 +25,10 @@ import whisperx
from generator import load_csm_1b, Segment
from dataclasses import dataclass
# Add these imports at the top
import psutil
import gc
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
@@ -56,8 +60,11 @@ class AppModels:
generator = None
tokenizer = None
llm = None
asr_model = None
asr_processor = None
whisperx_model = None
whisperx_align_model = None
whisperx_align_metadata = None
diarize_model = None
last_language = None
# Initialize the models object
models = AppModels()
@@ -68,13 +75,13 @@ def load_models():
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 0})
logger.info("Loading CSM 1B model...")
# CSM 1B loading
try:
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 10, 'message': 'Loading CSM voice model'})
models.generator = load_csm_1b(device=DEVICE)
logger.info("CSM 1B model loaded successfully")
socketio.emit('model_status', {'model': 'csm', 'status': 'loaded'})
progress = 33
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': progress})
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 33})
if DEVICE == "cuda":
torch.cuda.empty_cache()
except Exception as e:
@@ -83,39 +90,51 @@ def load_models():
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
logger.info("Loading Whisper ASR model...")
# WhisperX loading
try:
# Use regular Whisper instead of WhisperX to avoid compatibility issues
from transformers import WhisperProcessor, WhisperForConditionalGeneration
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
# Use WhisperX for better transcription with timestamps
import whisperx
# Use a smaller model for faster processing
model_id = "openai/whisper-small"
# Use compute_type based on device
compute_type = "float16" if DEVICE == "cuda" else "float32"
models.asr_processor = WhisperProcessor.from_pretrained(model_id)
models.asr_model = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
# Load the WhisperX model (smaller model for faster processing)
models.whisperx_model = whisperx.load_model("small", DEVICE, compute_type=compute_type)
logger.info("Whisper ASR model loaded successfully")
logger.info("WhisperX model loaded successfully")
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
progress = 66
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': progress})
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
if DEVICE == "cuda":
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Error loading ASR model: {str(e)}")
import traceback
error_details = traceback.format_exc()
logger.error(f"Error loading WhisperX model: {str(e)}\n{error_details}")
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
logger.info("Loading Llama 3.2 model...")
# Llama loading
try:
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 70, 'message': 'Loading language model'})
models.llm = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B",
device_map=DEVICE,
torch_dtype=torch.bfloat16
)
models.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
# Configure all special tokens
models.tokenizer.pad_token = models.tokenizer.eos_token
models.tokenizer.padding_side = "left" # For causal language modeling
# Inform the model about the pad token
if hasattr(models.llm.config, "pad_token_id") and models.llm.config.pad_token_id is None:
models.llm.config.pad_token_id = models.tokenizer.pad_token_id
logger.info("Llama 3.2 model loaded successfully")
socketio.emit('model_status', {'model': 'llm', 'status': 'loaded'})
progress = 100
socketio.emit('model_status', {'model': 'overall', 'status': 'loaded', 'progress': progress})
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 100, 'message': 'All models loaded successfully'})
socketio.emit('model_status', {'model': 'overall', 'status': 'loaded'})
except Exception as e:
logger.error(f"Error loading Llama 3.2 model: {str(e)}")
socketio.emit('model_status', {'model': 'llm', 'status': 'error', 'message': str(e)})
@@ -170,11 +189,44 @@ def system_status():
"device": DEVICE,
"models": {
"generator": models.generator is not None,
"asr": models.asr_model is not None, # Use the correct model name
"asr": models.whisperx_model is not None, # Use the correct model name
"llm": models.llm is not None
}
})
# Add a new endpoint to check system resources
@app.route('/api/system_resources')
def system_resources():
# Get CPU usage
cpu_percent = psutil.cpu_percent(interval=0.1)
# Get memory usage
memory = psutil.virtual_memory()
memory_used_gb = memory.used / (1024 ** 3)
memory_total_gb = memory.total / (1024 ** 3)
memory_percent = memory.percent
# Get GPU memory if available
gpu_memory = {}
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
gpu_memory[f"gpu_{i}"] = {
"allocated": torch.cuda.memory_allocated(i) / (1024 ** 3),
"reserved": torch.cuda.memory_reserved(i) / (1024 ** 3),
"max_allocated": torch.cuda.max_memory_allocated(i) / (1024 ** 3)
}
return jsonify({
"cpu_percent": cpu_percent,
"memory": {
"used_gb": memory_used_gb,
"total_gb": memory_total_gb,
"percent": memory_percent
},
"gpu_memory": gpu_memory,
"active_sessions": len(active_conversations)
})
# Socket event handlers
@socketio.on('connect')
def handle_connect(auth=None):
@@ -280,8 +332,8 @@ def process_audio_queue(session_id, q):
del user_queues[session_id]
def process_audio_and_respond(session_id, data):
"""Process audio data and generate a response using standard Whisper"""
if models.generator is None or models.asr_model is None or models.llm is None:
"""Process audio data and generate a response using WhisperX"""
if models.generator is None or models.whisperx_model is None or models.llm is None:
logger.warning("Models not yet loaded!")
with app.app_context():
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
@@ -317,29 +369,69 @@ def process_audio_and_respond(session_id, data):
with app.app_context():
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
# Load audio for ASR processing
import librosa
speech_array, sampling_rate = librosa.load(temp_path, sr=16000)
# Load audio using WhisperX
import whisperx
audio = whisperx.load_audio(temp_path)
# Convert to required format
input_features = models.asr_processor(
speech_array,
sampling_rate=sampling_rate,
return_tensors="pt"
).input_features.to(DEVICE)
# Check audio length and add a warning for short clips
audio_length = len(audio) / 16000 # assuming 16kHz sample rate
if audio_length < 1.0:
logger.warning(f"Audio is very short ({audio_length:.2f}s), may affect transcription quality")
# Generate token ids
predicted_ids = models.asr_model.generate(
input_features,
language="en",
task="transcribe"
)
# Transcribe using WhisperX
batch_size = 16 # adjust based on your GPU memory
logger.info("Running WhisperX transcription...")
# Decode the predicted ids to text
user_text = models.asr_processor.batch_decode(
predicted_ids,
skip_special_tokens=True
)[0]
# Handle the warning about audio being shorter than 30s by suppressing it
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="audio is shorter than 30s")
result = models.whisperx_model.transcribe(audio, batch_size=batch_size)
# Get the detected language
language_code = result["language"]
logger.info(f"Detected language: {language_code}")
# Check if alignment model needs to be loaded or updated
if models.whisperx_align_model is None or language_code != models.last_language:
# Clean up old models if they exist
if models.whisperx_align_model is not None:
del models.whisperx_align_model
del models.whisperx_align_metadata
if DEVICE == "cuda":
gc.collect()
torch.cuda.empty_cache()
# Load new alignment model for the detected language
logger.info(f"Loading alignment model for language: {language_code}")
models.whisperx_align_model, models.whisperx_align_metadata = whisperx.load_align_model(
language_code=language_code, device=DEVICE
)
models.last_language = language_code
# Align the transcript to get word-level timestamps
if result["segments"] and len(result["segments"]) > 0:
logger.info("Aligning transcript...")
result = whisperx.align(
result["segments"],
models.whisperx_align_model,
models.whisperx_align_metadata,
audio,
DEVICE,
return_char_alignments=False
)
# Process the segments for better output
for segment in result["segments"]:
# Round timestamps for better display
segment["start"] = round(segment["start"], 2)
segment["end"] = round(segment["end"], 2)
# Add a confidence score if not present
if "confidence" not in segment:
segment["confidence"] = 1.0 # Default confidence
# Extract the full text from all segments
user_text = ' '.join([segment['text'] for segment in result['segments']])
# If no text was recognized, don't process further
if not user_text or len(user_text.strip()) == 0:
@@ -371,11 +463,12 @@ def process_audio_and_respond(session_id, data):
audio=waveform.squeeze()
)
# Send transcription to client
# Send transcription to client with detailed segments
with app.app_context():
socketio.emit('transcription', {
'text': user_text,
'speaker': speaker_id
'speaker': speaker_id,
'segments': result['segments'] # Include the detailed segments with timestamps
}, room=session_id)
# Generate AI response using Llama
@@ -392,31 +485,41 @@ def process_audio_and_respond(session_id, data):
prompt = f"{conversation_history}Assistant: "
# Generate response with Llama
input_tokens = models.tokenizer(
prompt,
return_tensors="pt",
padding=True,
return_attention_mask=True
)
input_ids = input_tokens.input_ids.to(DEVICE)
attention_mask = input_tokens.attention_mask.to(DEVICE)
with torch.no_grad():
generated_ids = models.llm.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=100,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=models.tokenizer.eos_token_id
try:
# Ensure pad token is set
if models.tokenizer.pad_token is None:
models.tokenizer.pad_token = models.tokenizer.eos_token
input_tokens = models.tokenizer(
prompt,
return_tensors="pt",
padding=True,
return_attention_mask=True
)
# Decode the response
response_text = models.tokenizer.decode(
generated_ids[0][input_ids.shape[1]:],
skip_special_tokens=True
).strip()
input_ids = input_tokens.input_ids.to(DEVICE)
attention_mask = input_tokens.attention_mask.to(DEVICE)
with torch.no_grad():
generated_ids = models.llm.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=100,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=models.tokenizer.eos_token_id
)
# Decode the response
response_text = models.tokenizer.decode(
generated_ids[0][input_ids.shape[1]:],
skip_special_tokens=True
).strip()
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
import traceback
logger.error(traceback.format_exc())
response_text = "I'm sorry, I encountered an error while processing your request."
# Synthesize speech
with app.app_context():

View File

@@ -43,7 +43,9 @@ const state = {
volumeUpdateInterval: null,
visualizerAnimationFrame: null,
currentSpeaker: 0,
aiSpeakerId: 1 // Define the AI's speaker ID to match server.py
aiSpeakerId: 1, // Define the AI's speaker ID to match server.py
transcriptionRetries: 0,
maxTranscriptionRetries: 3
};
// Visualizer variables
@@ -429,7 +431,15 @@ function handleSpeechState(isSilent) {
if (!hasAudioContent) {
console.warn('Audio buffer appears to be empty or very quiet');
addSystemMessage('No speech detected. Please try again and speak clearly.');
if (state.transcriptionRetries < state.maxTranscriptionRetries) {
state.transcriptionRetries++;
const retryMessage = `No speech detected (attempt ${state.transcriptionRetries}/${state.maxTranscriptionRetries}). Please speak louder and try again.`;
addSystemMessage(retryMessage);
} else {
state.transcriptionRetries = 0;
addSystemMessage('Multiple attempts failed to detect speech. Please check your microphone and try again.');
}
return;
}