Frontend Fixed

This commit is contained in:
2025-03-30 03:43:08 -04:00
parent 9b613029e2
commit d4a7cf0e2f
14 changed files with 777 additions and 2335 deletions

136
Backend/api/app.py Normal file
View File

@@ -0,0 +1,136 @@
import os
import logging
import threading
from dataclasses import dataclass
from flask import Flask
from flask_socketio import SocketIO
from flask_cors import CORS
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Configure device
import torch
if torch.cuda.is_available():
DEVICE = "cuda"
elif torch.backends.mps.is_available():
DEVICE = "mps"
else:
DEVICE = "cpu"
logger.info(f"Using device: {DEVICE}")
# Initialize Flask app
app = Flask(__name__, static_folder='../', static_url_path='')
CORS(app)
socketio = SocketIO(app, cors_allowed_origins="*", ping_timeout=120)
# Global variables for conversation state
active_conversations = {}
user_queues = {}
processing_threads = {}
# Model storage
@dataclass
class AppModels:
generator = None
tokenizer = None
llm = None
whisperx_model = None
whisperx_align_model = None
whisperx_align_metadata = None
last_language = None
models = AppModels()
def load_models():
"""Load all required models"""
from generator import load_csm_1b
import whisperx
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
global models
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 0})
# CSM 1B loading
try:
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 10, 'message': 'Loading CSM voice model'})
models.generator = load_csm_1b(device=DEVICE)
logger.info("CSM 1B model loaded successfully")
socketio.emit('model_status', {'model': 'csm', 'status': 'loaded'})
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 33})
if DEVICE == "cuda":
torch.cuda.empty_cache()
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
# WhisperX loading
try:
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
# Use WhisperX for better transcription with timestamps
# Use compute_type based on device
compute_type = "float16" if DEVICE == "cuda" else "float32"
# Load the WhisperX model (smaller model for faster processing)
models.whisperx_model = whisperx.load_model("small", DEVICE, compute_type=compute_type)
logger.info("WhisperX model loaded successfully")
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
if DEVICE == "cuda":
torch.cuda.empty_cache()
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"Error loading WhisperX model: {str(e)}\n{error_details}")
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
# Llama loading
try:
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 70, 'message': 'Loading language model'})
models.llm = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B",
device_map=DEVICE,
torch_dtype=torch.bfloat16
)
models.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
# Configure all special tokens
models.tokenizer.pad_token = models.tokenizer.eos_token
models.tokenizer.padding_side = "left" # For causal language modeling
# Inform the model about the pad token
if hasattr(models.llm.config, "pad_token_id") and models.llm.config.pad_token_id is None:
models.llm.config.pad_token_id = models.tokenizer.pad_token_id
logger.info("Llama 3.2 model loaded successfully")
socketio.emit('model_status', {'model': 'llm', 'status': 'loaded'})
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 100, 'message': 'All models loaded successfully'})
socketio.emit('model_status', {'model': 'overall', 'status': 'loaded'})
except Exception as e:
logger.error(f"Error loading Llama 3.2 model: {str(e)}")
socketio.emit('model_status', {'model': 'llm', 'status': 'error', 'message': str(e)})
# Load models in a background thread
threading.Thread(target=load_models, daemon=True).start()
# Import routes and socket handlers
from api.routes import register_routes
from api.socket_handlers import register_handlers
# Register routes and socket handlers
register_routes(app)
register_handlers(socketio, app, models, active_conversations, user_queues, processing_threads, DEVICE)
# Run server if executed directly
if __name__ == '__main__':
port = int(os.environ.get('PORT', 5000))
debug_mode = os.environ.get('DEBUG', 'False').lower() == 'true'
logger.info(f"Starting server on port {port} (debug={debug_mode})")
socketio.run(app, host='0.0.0.0', port=port, debug=debug_mode, allow_unsafe_werkzeug=True)

176
Backend/api/generator.py Normal file
View File

@@ -0,0 +1,176 @@
from dataclasses import dataclass
from typing import List, Tuple
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from models import Model
from moshi.models import loaders
from tokenizers.processors import TemplateProcessing
from transformers import AutoTokenizer
from watermarking import CSM_1B_GH_WATERMARK, load_watermarker, watermark
@dataclass
class Segment:
speaker: int
text: str
# (num_samples,), sample_rate = 24_000
audio: torch.Tensor
def load_llama3_tokenizer():
"""
https://github.com/huggingface/transformers/issues/22794#issuecomment-2092623992
"""
tokenizer_name = "meta-llama/Llama-3.2-1B"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
bos = tokenizer.bos_token
eos = tokenizer.eos_token
tokenizer._tokenizer.post_processor = TemplateProcessing(
single=f"{bos}:0 $A:0 {eos}:0",
pair=f"{bos}:0 $A:0 {eos}:0 {bos}:1 $B:1 {eos}:1",
special_tokens=[(f"{bos}", tokenizer.bos_token_id), (f"{eos}", tokenizer.eos_token_id)],
)
return tokenizer
class Generator:
def __init__(
self,
model: Model,
):
self._model = model
self._model.setup_caches(1)
self._text_tokenizer = load_llama3_tokenizer()
device = next(model.parameters()).device
mimi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME)
mimi = loaders.get_mimi(mimi_weight, device=device)
mimi.set_num_codebooks(32)
self._audio_tokenizer = mimi
self._watermarker = load_watermarker(device=device)
self.sample_rate = mimi.sample_rate
self.device = device
def _tokenize_text_segment(self, text: str, speaker: int) -> Tuple[torch.Tensor, torch.Tensor]:
frame_tokens = []
frame_masks = []
text_tokens = self._text_tokenizer.encode(f"[{speaker}]{text}")
text_frame = torch.zeros(len(text_tokens), 33).long()
text_frame_mask = torch.zeros(len(text_tokens), 33).bool()
text_frame[:, -1] = torch.tensor(text_tokens)
text_frame_mask[:, -1] = True
frame_tokens.append(text_frame.to(self.device))
frame_masks.append(text_frame_mask.to(self.device))
return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)
def _tokenize_audio(self, audio: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
assert audio.ndim == 1, "Audio must be single channel"
frame_tokens = []
frame_masks = []
# (K, T)
audio = audio.to(self.device)
audio_tokens = self._audio_tokenizer.encode(audio.unsqueeze(0).unsqueeze(0))[0]
# add EOS frame
eos_frame = torch.zeros(audio_tokens.size(0), 1).to(self.device)
audio_tokens = torch.cat([audio_tokens, eos_frame], dim=1)
audio_frame = torch.zeros(audio_tokens.size(1), 33).long().to(self.device)
audio_frame_mask = torch.zeros(audio_tokens.size(1), 33).bool().to(self.device)
audio_frame[:, :-1] = audio_tokens.transpose(0, 1)
audio_frame_mask[:, :-1] = True
frame_tokens.append(audio_frame)
frame_masks.append(audio_frame_mask)
return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)
def _tokenize_segment(self, segment: Segment) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns:
(seq_len, 33), (seq_len, 33)
"""
text_tokens, text_masks = self._tokenize_text_segment(segment.text, segment.speaker)
audio_tokens, audio_masks = self._tokenize_audio(segment.audio)
return torch.cat([text_tokens, audio_tokens], dim=0), torch.cat([text_masks, audio_masks], dim=0)
@torch.inference_mode()
def generate(
self,
text: str,
speaker: int,
context: List[Segment],
max_audio_length_ms: float = 90_000,
temperature: float = 0.9,
topk: int = 50,
) -> torch.Tensor:
self._model.reset_caches()
max_generation_len = int(max_audio_length_ms / 80)
tokens, tokens_mask = [], []
for segment in context:
segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
tokens.append(segment_tokens)
tokens_mask.append(segment_tokens_mask)
gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(text, speaker)
tokens.append(gen_segment_tokens)
tokens_mask.append(gen_segment_tokens_mask)
prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device)
prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device)
samples = []
curr_tokens = prompt_tokens.unsqueeze(0)
curr_tokens_mask = prompt_tokens_mask.unsqueeze(0)
curr_pos = torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device)
max_seq_len = 2048
max_context_len = max_seq_len - max_generation_len
if curr_tokens.size(1) >= max_context_len:
raise ValueError(
f"Inputs too long, must be below max_seq_len - max_generation_len: {max_context_len}"
)
for _ in range(max_generation_len):
sample = self._model.generate_frame(curr_tokens, curr_tokens_mask, curr_pos, temperature, topk)
if torch.all(sample == 0):
break # eos
samples.append(sample)
curr_tokens = torch.cat([sample, torch.zeros(1, 1).long().to(self.device)], dim=1).unsqueeze(1)
curr_tokens_mask = torch.cat(
[torch.ones_like(sample).bool(), torch.zeros(1, 1).bool().to(self.device)], dim=1
).unsqueeze(1)
curr_pos = curr_pos[:, -1:] + 1
audio = self._audio_tokenizer.decode(torch.stack(samples).permute(1, 2, 0)).squeeze(0).squeeze(0)
# This applies an imperceptible watermark to identify audio as AI-generated.
# Watermarking ensures transparency, dissuades misuse, and enables traceability.
# Please be a responsible AI citizen and keep the watermarking in place.
# If using CSM 1B in another application, use your own private key and keep it secret.
audio, wm_sample_rate = watermark(self._watermarker, audio, self.sample_rate, CSM_1B_GH_WATERMARK)
audio = torchaudio.functional.resample(audio, orig_freq=wm_sample_rate, new_freq=self.sample_rate)
return audio
def load_csm_1b(device: str = "cuda") -> Generator:
model = Model.from_pretrained("sesame/csm-1b")
model.to(device=device, dtype=torch.bfloat16)
generator = Generator(model)
return generator

203
Backend/api/models.py Normal file
View File

@@ -0,0 +1,203 @@
from dataclasses import dataclass
import torch
import torch.nn as nn
import torchtune
from huggingface_hub import PyTorchModelHubMixin
from torchtune.models import llama3_2
def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder:
return llama3_2.llama3_2(
vocab_size=128_256,
num_layers=16,
num_heads=32,
num_kv_heads=8,
embed_dim=2048,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=500_000,
scale_factor=32,
)
def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder:
return llama3_2.llama3_2(
vocab_size=128_256,
num_layers=4,
num_heads=8,
num_kv_heads=2,
embed_dim=1024,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=500_000,
scale_factor=32,
)
FLAVORS = {
"llama-1B": llama3_2_1B,
"llama-100M": llama3_2_100M,
}
def _prepare_transformer(model):
embed_dim = model.tok_embeddings.embedding_dim
model.tok_embeddings = nn.Identity()
model.output = nn.Identity()
return model, embed_dim
def _create_causal_mask(seq_len: int, device: torch.device):
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
"""
Args:
mask: (max_seq_len, max_seq_len)
input_pos: (batch_size, seq_len)
Returns:
(batch_size, seq_len, max_seq_len)
"""
r = mask[input_pos, :]
return r
def _multinomial_sample_one_no_sync(probs): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs).exponential_(1)
return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample_topk(logits: torch.Tensor, topk: int, temperature: float):
logits = logits / temperature
filter_value: float = -float("Inf")
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
scores_processed = logits.masked_fill(indices_to_remove, filter_value)
scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1)
probs = torch.nn.functional.softmax(scores_processed, dim=-1)
sample_token = _multinomial_sample_one_no_sync(probs)
return sample_token
@dataclass
class ModelArgs:
backbone_flavor: str
decoder_flavor: str
text_vocab_size: int
audio_vocab_size: int
audio_num_codebooks: int
class Model(
nn.Module,
PyTorchModelHubMixin,
repo_url="https://github.com/SesameAILabs/csm",
pipeline_tag="text-to-speech",
license="apache-2.0",
):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[config.backbone_flavor]())
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[config.decoder_flavor]())
self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
self.audio_embeddings = nn.Embedding(config.audio_vocab_size * config.audio_num_codebooks, backbone_dim)
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
self.codebook0_head = nn.Linear(backbone_dim, config.audio_vocab_size, bias=False)
self.audio_head = nn.Parameter(torch.empty(config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size))
def setup_caches(self, max_batch_size: int) -> torch.Tensor:
"""Setup KV caches and return a causal mask."""
dtype = next(self.parameters()).dtype
device = next(self.parameters()).device
with device:
self.backbone.setup_caches(max_batch_size, dtype)
self.decoder.setup_caches(max_batch_size, dtype, decoder_max_seq_len=self.config.audio_num_codebooks)
self.register_buffer("backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device))
self.register_buffer("decoder_causal_mask", _create_causal_mask(self.config.audio_num_codebooks, device))
def generate_frame(
self,
tokens: torch.Tensor,
tokens_mask: torch.Tensor,
input_pos: torch.Tensor,
temperature: float,
topk: int,
) -> torch.Tensor:
"""
Args:
tokens: (batch_size, seq_len, audio_num_codebooks+1)
tokens_mask: (batch_size, seq_len, audio_num_codebooks+1)
input_pos: (batch_size, seq_len) positions for each token
mask: (batch_size, seq_len, max_seq_len
Returns:
(batch_size, audio_num_codebooks) sampled tokens
"""
dtype = next(self.parameters()).dtype
b, s, _ = tokens.size()
assert self.backbone.caches_are_enabled(), "backbone caches are not enabled"
curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
embeds = self._embed_tokens(tokens)
masked_embeds = embeds * tokens_mask.unsqueeze(-1)
h = masked_embeds.sum(dim=2)
h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(dtype=dtype)
last_h = h[:, -1, :]
c0_logits = self.codebook0_head(last_h)
c0_sample = sample_topk(c0_logits, topk, temperature)
c0_embed = self._embed_audio(0, c0_sample)
curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1)
curr_sample = c0_sample.clone()
curr_pos = torch.arange(0, curr_h.size(1), device=curr_h.device).unsqueeze(0).repeat(curr_h.size(0), 1)
# Decoder caches must be reset every frame.
self.decoder.reset_caches()
for i in range(1, self.config.audio_num_codebooks):
curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
decoder_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask).to(
dtype=dtype
)
ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1])
ci_sample = sample_topk(ci_logits, topk, temperature)
ci_embed = self._embed_audio(i, ci_sample)
curr_h = ci_embed
curr_sample = torch.cat([curr_sample, ci_sample], dim=1)
curr_pos = curr_pos[:, -1:] + 1
return curr_sample
def reset_caches(self):
self.backbone.reset_caches()
self.decoder.reset_caches()
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
return self.audio_embeddings(tokens + codebook * self.config.audio_vocab_size)
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2)
audio_tokens = tokens[:, :, :-1] + (
self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device)
)
audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape(
tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1
)
return torch.cat([audio_embeds, text_embeds], dim=-2)

74
Backend/api/routes.py Normal file
View File

@@ -0,0 +1,74 @@
import os
import torch
import psutil
from flask import send_from_directory, jsonify, request
def register_routes(app):
"""Register HTTP routes for the application"""
@app.route('/')
def index():
"""Serve the main application page"""
return send_from_directory(app.static_folder, 'index.html')
@app.route('/voice-chat.js')
def serve_js():
"""Serve the JavaScript file"""
return send_from_directory(app.static_folder, 'voice-chat.js')
@app.route('/api/status')
def system_status():
"""Return the system status"""
# Import here to avoid circular imports
from api.app import models, DEVICE
return jsonify({
"status": "ok",
"cuda_available": torch.cuda.is_available(),
"device": DEVICE,
"models": {
"generator": models.generator is not None,
"asr": models.whisperx_model is not None,
"llm": models.llm is not None
},
"versions": {
"transformers": "4.49.0", # Replace with actual version
"torch": torch.__version__
}
})
@app.route('/api/system_resources')
def system_resources():
"""Return system resource usage"""
# Import here to avoid circular imports
from api.app import active_conversations, DEVICE
# Get CPU usage
cpu_percent = psutil.cpu_percent(interval=0.1)
# Get memory usage
memory = psutil.virtual_memory()
memory_used_gb = memory.used / (1024 ** 3)
memory_total_gb = memory.total / (1024 ** 3)
memory_percent = memory.percent
# Get GPU memory if available
gpu_memory = {}
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
gpu_memory[f"gpu_{i}"] = {
"allocated": torch.cuda.memory_allocated(i) / (1024 ** 3),
"reserved": torch.cuda.memory_reserved(i) / (1024 ** 3),
"max_allocated": torch.cuda.max_memory_allocated(i) / (1024 ** 3)
}
return jsonify({
"cpu_percent": cpu_percent,
"memory": {
"used_gb": memory_used_gb,
"total_gb": memory_total_gb,
"percent": memory_percent
},
"gpu_memory": gpu_memory,
"active_sessions": len(active_conversations)
})

View File

@@ -0,0 +1,392 @@
import os
import io
import base64
import time
import threading
import queue
import tempfile
import gc
import logging
import traceback
from typing import Dict, List, Optional
import torch
import torchaudio
import numpy as np
from flask import request
from flask_socketio import emit
# Import conversation model
from generator import Segment
logger = logging.getLogger(__name__)
# Conversation data structure
class Conversation:
def __init__(self, session_id):
self.session_id = session_id
self.segments: List[Segment] = []
self.current_speaker = 0
self.ai_speaker_id = 1 # Default AI speaker ID
self.last_activity = time.time()
self.is_processing = False
def add_segment(self, text, speaker, audio):
segment = Segment(text=text, speaker=speaker, audio=audio)
self.segments.append(segment)
self.last_activity = time.time()
return segment
def get_context(self, max_segments=10):
"""Return the most recent segments for context"""
return self.segments[-max_segments:] if self.segments else []
def register_handlers(socketio, app, models, active_conversations, user_queues, processing_threads, DEVICE):
"""Register Socket.IO event handlers"""
@socketio.on('connect')
def handle_connect(auth=None):
"""Handle client connection"""
session_id = request.sid
logger.info(f"Client connected: {session_id}")
# Initialize conversation data
if session_id not in active_conversations:
active_conversations[session_id] = Conversation(session_id)
user_queues[session_id] = queue.Queue()
processing_threads[session_id] = threading.Thread(
target=process_audio_queue,
args=(session_id, user_queues[session_id], app, socketio, models, active_conversations, DEVICE),
daemon=True
)
processing_threads[session_id].start()
emit('connection_status', {'status': 'connected'})
@socketio.on('disconnect')
def handle_disconnect(reason=None):
"""Handle client disconnection"""
session_id = request.sid
logger.info(f"Client disconnected: {session_id}. Reason: {reason}")
# Cleanup
if session_id in active_conversations:
# Mark for deletion rather than immediately removing
# as the processing thread might still be accessing it
active_conversations[session_id].is_processing = False
user_queues[session_id].put(None) # Signal thread to terminate
@socketio.on('audio_data')
def handle_audio_data(data):
"""Handle incoming audio data"""
session_id = request.sid
logger.info(f"Received audio data from {session_id}")
# Check if the models are loaded
if models.generator is None or models.whisperx_model is None or models.llm is None:
emit('error', {'message': 'Models still loading, please wait'})
return
# Check if we're already processing for this session
if session_id in active_conversations and active_conversations[session_id].is_processing:
emit('error', {'message': 'Still processing previous audio, please wait'})
return
# Add to processing queue
if session_id in user_queues:
user_queues[session_id].put(data)
else:
emit('error', {'message': 'Session not initialized, please refresh the page'})
def process_audio_queue(session_id, q, app, socketio, models, active_conversations, DEVICE):
"""Background thread to process audio chunks for a session"""
logger.info(f"Started processing thread for session: {session_id}")
try:
while session_id in active_conversations:
try:
# Get the next audio chunk with a timeout
data = q.get(timeout=120)
if data is None: # Termination signal
break
# Process the audio and generate a response
process_audio_and_respond(session_id, data, app, socketio, models, active_conversations, DEVICE)
except queue.Empty:
# Timeout, check if session is still valid
continue
except Exception as e:
logger.error(f"Error processing audio for {session_id}: {str(e)}")
# Create an app context for the socket emit
with app.app_context():
socketio.emit('error', {'message': str(e)}, room=session_id)
finally:
logger.info(f"Ending processing thread for session: {session_id}")
# Clean up when thread is done
with app.app_context():
if session_id in active_conversations:
del active_conversations[session_id]
if session_id in user_queues:
del user_queues[session_id]
def process_audio_and_respond(session_id, data, app, socketio, models, active_conversations, DEVICE):
"""Process audio data and generate a response using WhisperX"""
if models.generator is None or models.whisperx_model is None or models.llm is None:
logger.warning("Models not yet loaded!")
with app.app_context():
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
return
logger.info(f"Processing audio for session {session_id}")
conversation = active_conversations[session_id]
try:
# Set processing flag
conversation.is_processing = True
# Process base64 audio data
audio_data = data['audio']
speaker_id = data['speaker']
logger.info(f"Received audio from speaker {speaker_id}")
# Convert from base64 to WAV
try:
audio_bytes = base64.b64decode(audio_data.split(',')[1])
logger.info(f"Decoded audio bytes: {len(audio_bytes)} bytes")
except Exception as e:
logger.error(f"Error decoding base64 audio: {str(e)}")
raise
# Save to temporary file for processing
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
temp_file.write(audio_bytes)
temp_path = temp_file.name
try:
# Notify client that transcription is starting
with app.app_context():
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
# Load audio using WhisperX
import whisperx
audio = whisperx.load_audio(temp_path)
# Check audio length and add a warning for short clips
audio_length = len(audio) / 16000 # assuming 16kHz sample rate
if audio_length < 1.0:
logger.warning(f"Audio is very short ({audio_length:.2f}s), may affect transcription quality")
# Transcribe using WhisperX
batch_size = 16 # adjust based on your GPU memory
logger.info("Running WhisperX transcription...")
# Handle the warning about audio being shorter than 30s by suppressing it
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="audio is shorter than 30s")
result = models.whisperx_model.transcribe(audio, batch_size=batch_size)
# Get the detected language
language_code = result["language"]
logger.info(f"Detected language: {language_code}")
# Check if alignment model needs to be loaded or updated
if models.whisperx_align_model is None or language_code != models.last_language:
# Clean up old models if they exist
if models.whisperx_align_model is not None:
del models.whisperx_align_model
del models.whisperx_align_metadata
if DEVICE == "cuda":
gc.collect()
torch.cuda.empty_cache()
# Load new alignment model for the detected language
logger.info(f"Loading alignment model for language: {language_code}")
models.whisperx_align_model, models.whisperx_align_metadata = whisperx.load_align_model(
language_code=language_code, device=DEVICE
)
models.last_language = language_code
# Align the transcript to get word-level timestamps
if result["segments"] and len(result["segments"]) > 0:
logger.info("Aligning transcript...")
result = whisperx.align(
result["segments"],
models.whisperx_align_model,
models.whisperx_align_metadata,
audio,
DEVICE,
return_char_alignments=False
)
# Process the segments for better output
for segment in result["segments"]:
# Round timestamps for better display
segment["start"] = round(segment["start"], 2)
segment["end"] = round(segment["end"], 2)
# Add a confidence score if not present
if "confidence" not in segment:
segment["confidence"] = 1.0 # Default confidence
# Extract the full text from all segments
user_text = ' '.join([segment['text'] for segment in result['segments']])
# If no text was recognized, don't process further
if not user_text or len(user_text.strip()) == 0:
with app.app_context():
socketio.emit('error', {'message': 'No speech detected'}, room=session_id)
return
logger.info(f"Transcription: {user_text}")
# Load audio for CSM input
waveform, sample_rate = torchaudio.load(temp_path)
# Normalize to mono if needed
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample to the CSM sample rate if needed
if sample_rate != models.generator.sample_rate:
waveform = torchaudio.functional.resample(
waveform,
orig_freq=sample_rate,
new_freq=models.generator.sample_rate
)
# Add the user's message to conversation history
user_segment = conversation.add_segment(
text=user_text,
speaker=speaker_id,
audio=waveform.squeeze()
)
# Send transcription to client with detailed segments
with app.app_context():
socketio.emit('transcription', {
'text': user_text,
'speaker': speaker_id,
'segments': result['segments'] # Include the detailed segments with timestamps
}, room=session_id)
# Generate AI response using Llama
with app.app_context():
socketio.emit('processing_status', {'status': 'generating'}, room=session_id)
# Create prompt from conversation history
conversation_history = ""
for segment in conversation.segments[-5:]: # Last 5 segments for context
role = "User" if segment.speaker == 0 else "Assistant"
conversation_history += f"{role}: {segment.text}\n"
# Add final prompt
prompt = f"{conversation_history}Assistant: "
# Generate response with Llama
try:
# Ensure pad token is set
if models.tokenizer.pad_token is None:
models.tokenizer.pad_token = models.tokenizer.eos_token
input_tokens = models.tokenizer(
prompt,
return_tensors="pt",
padding=True,
return_attention_mask=True
)
input_ids = input_tokens.input_ids.to(DEVICE)
attention_mask = input_tokens.attention_mask.to(DEVICE)
with torch.no_grad():
generated_ids = models.llm.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=100,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=models.tokenizer.eos_token_id
)
# Decode the response
response_text = models.tokenizer.decode(
generated_ids[0][input_ids.shape[1]:],
skip_special_tokens=True
).strip()
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
logger.error(traceback.format_exc())
response_text = "I'm sorry, I encountered an error while processing your request."
# Synthesize speech
with app.app_context():
socketio.emit('processing_status', {'status': 'synthesizing'}, room=session_id)
# Start sending the audio response
socketio.emit('audio_response_start', {
'text': response_text,
'total_chunks': 1,
'chunk_index': 0
}, room=session_id)
# Define AI speaker ID
ai_speaker_id = conversation.ai_speaker_id
# Generate audio
audio_tensor = models.generator.generate(
text=response_text,
speaker=ai_speaker_id,
context=conversation.get_context(),
max_audio_length_ms=10_000,
temperature=0.9
)
# Add AI response to conversation history
ai_segment = conversation.add_segment(
text=response_text,
speaker=ai_speaker_id,
audio=audio_tensor
)
# Convert audio to WAV format
with io.BytesIO() as wav_io:
torchaudio.save(
wav_io,
audio_tensor.unsqueeze(0).cpu(),
models.generator.sample_rate,
format="wav"
)
wav_io.seek(0)
wav_data = wav_io.read()
# Convert WAV data to base64
audio_base64 = f"data:audio/wav;base64,{base64.b64encode(wav_data).decode('utf-8')}"
# Send audio chunk to client
with app.app_context():
socketio.emit('audio_response_chunk', {
'chunk': audio_base64,
'chunk_index': 0,
'total_chunks': 1,
'is_last': True
}, room=session_id)
# Signal completion
socketio.emit('audio_response_complete', {
'text': response_text
}, room=session_id)
finally:
# Clean up temp file
if os.path.exists(temp_path):
os.unlink(temp_path)
except Exception as e:
logger.error(f"Error processing audio: {str(e)}")
logger.error(traceback.format_exc())
with app.app_context():
socketio.emit('error', {'message': f'Error: {str(e)}'}, room=session_id)
finally:
# Reset processing flag
conversation.is_processing = False

View File

@@ -0,0 +1,79 @@
import argparse
import silentcipher
import torch
import torchaudio
# This watermark key is public, it is not secure.
# If using CSM 1B in another application, use a new private key and keep it secret.
CSM_1B_GH_WATERMARK = [212, 211, 146, 56, 201]
def cli_check_audio() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--audio_path", type=str, required=True)
args = parser.parse_args()
check_audio_from_file(args.audio_path)
def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
model = silentcipher.get_model(
model_type="44.1k",
device=device,
)
return model
@torch.inference_mode()
def watermark(
watermarker: silentcipher.server.Model,
audio_array: torch.Tensor,
sample_rate: int,
watermark_key: list[int],
) -> tuple[torch.Tensor, int]:
audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
encoded, _ = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
output_sample_rate = min(44100, sample_rate)
encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
return encoded, output_sample_rate
@torch.inference_mode()
def verify(
watermarker: silentcipher.server.Model,
watermarked_audio: torch.Tensor,
sample_rate: int,
watermark_key: list[int],
) -> bool:
watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
is_watermarked = result["status"]
if is_watermarked:
is_csm_watermarked = result["messages"][0] == watermark_key
else:
is_csm_watermarked = False
return is_watermarked and is_csm_watermarked
def check_audio_from_file(audio_path: str) -> None:
watermarker = load_watermarker(device="cuda")
audio_array, sample_rate = load_audio(audio_path)
is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_GH_WATERMARK)
outcome = "Watermarked" if is_watermarked else "Not watermarked"
print(f"{outcome}: {audio_path}")
def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
audio_array, sample_rate = torchaudio.load(audio_path)
audio_array = audio_array.mean(dim=0)
return audio_array, int(sample_rate)
if __name__ == "__main__":
cli_check_audio()