Frontend Fixed
This commit is contained in:
@@ -1,639 +1,19 @@
|
||||
import os
|
||||
import io
|
||||
import base64
|
||||
import time
|
||||
import json
|
||||
import uuid
|
||||
import logging
|
||||
import threading
|
||||
import queue
|
||||
import tempfile
|
||||
import gc
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
"""
|
||||
CSM Voice Chat Server
|
||||
A voice chat application that uses CSM 1B for voice synthesis,
|
||||
WhisperX for speech recognition, and Llama 3.2 for language generation.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
import numpy as np
|
||||
from flask import Flask, request, jsonify, send_from_directory
|
||||
from flask_socketio import SocketIO, emit
|
||||
from flask_cors import CORS
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
# Start the Flask application
|
||||
from api.app import app, socketio
|
||||
|
||||
# Import WhisperX for better transcription
|
||||
import whisperx
|
||||
|
||||
from generator import load_csm_1b, Segment
|
||||
from dataclasses import dataclass
|
||||
|
||||
# Add these imports at the top
|
||||
import psutil
|
||||
import gc
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Initialize Flask app
|
||||
app = Flask(__name__, static_folder='.')
|
||||
CORS(app)
|
||||
socketio = SocketIO(app, cors_allowed_origins="*", ping_timeout=120)
|
||||
|
||||
# Configure device
|
||||
if torch.cuda.is_available():
|
||||
DEVICE = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
DEVICE = "mps"
|
||||
else:
|
||||
DEVICE = "cpu"
|
||||
|
||||
logger.info(f"Using device: {DEVICE}")
|
||||
|
||||
# Global variables
|
||||
active_conversations = {}
|
||||
user_queues = {}
|
||||
processing_threads = {}
|
||||
|
||||
# Load models
|
||||
@dataclass
|
||||
class AppModels:
|
||||
generator = None
|
||||
tokenizer = None
|
||||
llm = None
|
||||
whisperx_model = None
|
||||
whisperx_align_model = None
|
||||
whisperx_align_metadata = None
|
||||
diarize_model = None
|
||||
last_language = None
|
||||
|
||||
# Initialize the models object
|
||||
models = AppModels()
|
||||
|
||||
def load_models():
|
||||
"""Load all required models"""
|
||||
global models
|
||||
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 0})
|
||||
|
||||
# CSM 1B loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 10, 'message': 'Loading CSM voice model'})
|
||||
models.generator = load_csm_1b(device=DEVICE)
|
||||
logger.info("CSM 1B model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'csm', 'status': 'loaded'})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 33})
|
||||
if DEVICE == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
except Exception as e:
|
||||
import traceback
|
||||
error_details = traceback.format_exc()
|
||||
logger.error(f"Error loading CSM 1B model: {str(e)}\n{error_details}")
|
||||
socketio.emit('model_status', {'model': 'csm', 'status': 'error', 'message': str(e)})
|
||||
|
||||
# WhisperX loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 40, 'message': 'Loading speech recognition model'})
|
||||
# Use WhisperX for better transcription with timestamps
|
||||
import whisperx
|
||||
|
||||
# Use compute_type based on device
|
||||
compute_type = "float16" if DEVICE == "cuda" else "float32"
|
||||
|
||||
# Load the WhisperX model (smaller model for faster processing)
|
||||
models.whisperx_model = whisperx.load_model("small", DEVICE, compute_type=compute_type)
|
||||
|
||||
logger.info("WhisperX model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'loaded'})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 66})
|
||||
if DEVICE == "cuda":
|
||||
torch.cuda.empty_cache()
|
||||
except Exception as e:
|
||||
import traceback
|
||||
error_details = traceback.format_exc()
|
||||
logger.error(f"Error loading WhisperX model: {str(e)}\n{error_details}")
|
||||
socketio.emit('model_status', {'model': 'asr', 'status': 'error', 'message': str(e)})
|
||||
|
||||
# Llama loading
|
||||
try:
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 70, 'message': 'Loading language model'})
|
||||
models.llm = AutoModelForCausalLM.from_pretrained(
|
||||
"meta-llama/Llama-3.2-1B",
|
||||
device_map=DEVICE,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
models.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
||||
|
||||
# Configure all special tokens
|
||||
models.tokenizer.pad_token = models.tokenizer.eos_token
|
||||
models.tokenizer.padding_side = "left" # For causal language modeling
|
||||
|
||||
# Inform the model about the pad token
|
||||
if hasattr(models.llm.config, "pad_token_id") and models.llm.config.pad_token_id is None:
|
||||
models.llm.config.pad_token_id = models.tokenizer.pad_token_id
|
||||
|
||||
logger.info("Llama 3.2 model loaded successfully")
|
||||
socketio.emit('model_status', {'model': 'llm', 'status': 'loaded'})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loading', 'progress': 100, 'message': 'All models loaded successfully'})
|
||||
socketio.emit('model_status', {'model': 'overall', 'status': 'loaded'})
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading Llama 3.2 model: {str(e)}")
|
||||
socketio.emit('model_status', {'model': 'llm', 'status': 'error', 'message': str(e)})
|
||||
|
||||
# Load models in a background thread
|
||||
threading.Thread(target=load_models, daemon=True).start()
|
||||
|
||||
# Conversation data structure
|
||||
class Conversation:
|
||||
def __init__(self, session_id):
|
||||
self.session_id = session_id
|
||||
self.segments: List[Segment] = []
|
||||
self.current_speaker = 0
|
||||
self.ai_speaker_id = 1 # Add this property
|
||||
self.last_activity = time.time()
|
||||
self.is_processing = False
|
||||
|
||||
def add_segment(self, text, speaker, audio):
|
||||
segment = Segment(text=text, speaker=speaker, audio=audio)
|
||||
self.segments.append(segment)
|
||||
self.last_activity = time.time()
|
||||
return segment
|
||||
|
||||
def get_context(self, max_segments=10):
|
||||
"""Return the most recent segments for context"""
|
||||
return self.segments[-max_segments:] if self.segments else []
|
||||
|
||||
# Routes
|
||||
@app.route('/')
|
||||
def index():
|
||||
return send_from_directory('.', 'index.html')
|
||||
|
||||
@app.route('/voice-chat.js')
|
||||
def voice_chat_js():
|
||||
return send_from_directory('.', 'voice-chat.js')
|
||||
|
||||
@app.route('/api/health')
|
||||
def health_check():
|
||||
return jsonify({
|
||||
"status": "ok",
|
||||
"cuda_available": torch.cuda.is_available(),
|
||||
"models_loaded": models.generator is not None and models.llm is not None
|
||||
})
|
||||
|
||||
# Fix the system_status function:
|
||||
|
||||
@app.route('/api/status')
|
||||
def system_status():
|
||||
return jsonify({
|
||||
"status": "ok",
|
||||
"cuda_available": torch.cuda.is_available(),
|
||||
"device": DEVICE,
|
||||
"models": {
|
||||
"generator": models.generator is not None,
|
||||
"asr": models.whisperx_model is not None, # Use the correct model name
|
||||
"llm": models.llm is not None
|
||||
}
|
||||
})
|
||||
|
||||
# Add a new endpoint to check system resources
|
||||
@app.route('/api/system_resources')
|
||||
def system_resources():
|
||||
# Get CPU usage
|
||||
cpu_percent = psutil.cpu_percent(interval=0.1)
|
||||
|
||||
# Get memory usage
|
||||
memory = psutil.virtual_memory()
|
||||
memory_used_gb = memory.used / (1024 ** 3)
|
||||
memory_total_gb = memory.total / (1024 ** 3)
|
||||
memory_percent = memory.percent
|
||||
|
||||
# Get GPU memory if available
|
||||
gpu_memory = {}
|
||||
if torch.cuda.is_available():
|
||||
for i in range(torch.cuda.device_count()):
|
||||
gpu_memory[f"gpu_{i}"] = {
|
||||
"allocated": torch.cuda.memory_allocated(i) / (1024 ** 3),
|
||||
"reserved": torch.cuda.memory_reserved(i) / (1024 ** 3),
|
||||
"max_allocated": torch.cuda.max_memory_allocated(i) / (1024 ** 3)
|
||||
}
|
||||
|
||||
return jsonify({
|
||||
"cpu_percent": cpu_percent,
|
||||
"memory": {
|
||||
"used_gb": memory_used_gb,
|
||||
"total_gb": memory_total_gb,
|
||||
"percent": memory_percent
|
||||
},
|
||||
"gpu_memory": gpu_memory,
|
||||
"active_sessions": len(active_conversations)
|
||||
})
|
||||
|
||||
# Socket event handlers
|
||||
@socketio.on('connect')
|
||||
def handle_connect(auth=None):
|
||||
session_id = request.sid
|
||||
logger.info(f"Client connected: {session_id}")
|
||||
|
||||
# Initialize conversation data
|
||||
if session_id not in active_conversations:
|
||||
active_conversations[session_id] = Conversation(session_id)
|
||||
user_queues[session_id] = queue.Queue()
|
||||
processing_threads[session_id] = threading.Thread(
|
||||
target=process_audio_queue,
|
||||
args=(session_id, user_queues[session_id]),
|
||||
daemon=True
|
||||
)
|
||||
processing_threads[session_id].start()
|
||||
|
||||
emit('connection_status', {'status': 'connected'})
|
||||
|
||||
@socketio.on('disconnect')
|
||||
def handle_disconnect(reason=None):
|
||||
session_id = request.sid
|
||||
logger.info(f"Client disconnected: {session_id}. Reason: {reason}")
|
||||
|
||||
# Cleanup
|
||||
if session_id in active_conversations:
|
||||
# Mark for deletion rather than immediately removing
|
||||
# as the processing thread might still be accessing it
|
||||
active_conversations[session_id].is_processing = False
|
||||
user_queues[session_id].put(None) # Signal thread to terminate
|
||||
|
||||
@socketio.on('start_stream')
|
||||
def handle_start_stream():
|
||||
session_id = request.sid
|
||||
logger.info(f"Starting stream for client: {session_id}")
|
||||
emit('streaming_status', {'status': 'active'})
|
||||
|
||||
@socketio.on('stop_stream')
|
||||
def handle_stop_stream():
|
||||
session_id = request.sid
|
||||
logger.info(f"Stopping stream for client: {session_id}")
|
||||
emit('streaming_status', {'status': 'inactive'})
|
||||
|
||||
@socketio.on('clear_context')
|
||||
def handle_clear_context():
|
||||
session_id = request.sid
|
||||
logger.info(f"Clearing context for client: {session_id}")
|
||||
|
||||
if session_id in active_conversations:
|
||||
active_conversations[session_id].segments = []
|
||||
emit('context_updated', {'status': 'cleared'})
|
||||
|
||||
@socketio.on('audio_chunk')
|
||||
def handle_audio_chunk(data):
|
||||
session_id = request.sid
|
||||
audio_data = data.get('audio', '')
|
||||
speaker_id = int(data.get('speaker', 0))
|
||||
|
||||
if not audio_data or not session_id in active_conversations:
|
||||
return
|
||||
|
||||
# Update the current speaker
|
||||
active_conversations[session_id].current_speaker = speaker_id
|
||||
|
||||
# Queue audio for processing
|
||||
user_queues[session_id].put({
|
||||
'audio': audio_data,
|
||||
'speaker': speaker_id
|
||||
})
|
||||
|
||||
emit('processing_status', {'status': 'transcribing'})
|
||||
|
||||
def process_audio_queue(session_id, q):
|
||||
"""Background thread to process audio chunks for a session"""
|
||||
logger.info(f"Started processing thread for session: {session_id}")
|
||||
|
||||
try:
|
||||
while session_id in active_conversations:
|
||||
try:
|
||||
# Get the next audio chunk with a timeout
|
||||
data = q.get(timeout=120)
|
||||
if data is None: # Termination signal
|
||||
break
|
||||
|
||||
# Process the audio and generate a response
|
||||
process_audio_and_respond(session_id, data)
|
||||
|
||||
except queue.Empty:
|
||||
# Timeout, check if session is still valid
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing audio for {session_id}: {str(e)}")
|
||||
# Create an app context for the socket emit
|
||||
with app.app_context():
|
||||
socketio.emit('error', {'message': str(e)}, room=session_id)
|
||||
finally:
|
||||
logger.info(f"Ending processing thread for session: {session_id}")
|
||||
# Clean up when thread is done
|
||||
with app.app_context():
|
||||
if session_id in active_conversations:
|
||||
del active_conversations[session_id]
|
||||
if session_id in user_queues:
|
||||
del user_queues[session_id]
|
||||
|
||||
def process_audio_and_respond(session_id, data):
|
||||
"""Process audio data and generate a response using WhisperX"""
|
||||
if models.generator is None or models.whisperx_model is None or models.llm is None:
|
||||
logger.warning("Models not yet loaded!")
|
||||
with app.app_context():
|
||||
socketio.emit('error', {'message': 'Models still loading, please wait'}, room=session_id)
|
||||
return
|
||||
|
||||
logger.info(f"Processing audio for session {session_id}")
|
||||
conversation = active_conversations[session_id]
|
||||
|
||||
try:
|
||||
# Set processing flag
|
||||
conversation.is_processing = True
|
||||
|
||||
# Process base64 audio data
|
||||
audio_data = data['audio']
|
||||
speaker_id = data['speaker']
|
||||
logger.info(f"Received audio from speaker {speaker_id}")
|
||||
|
||||
# Convert from base64 to WAV
|
||||
try:
|
||||
audio_bytes = base64.b64decode(audio_data.split(',')[1])
|
||||
logger.info(f"Decoded audio bytes: {len(audio_bytes)} bytes")
|
||||
except Exception as e:
|
||||
logger.error(f"Error decoding base64 audio: {str(e)}")
|
||||
raise
|
||||
|
||||
# Save to temporary file for processing
|
||||
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
|
||||
temp_file.write(audio_bytes)
|
||||
temp_path = temp_file.name
|
||||
|
||||
try:
|
||||
# Notify client that transcription is starting
|
||||
with app.app_context():
|
||||
socketio.emit('processing_status', {'status': 'transcribing'}, room=session_id)
|
||||
|
||||
# Load audio using WhisperX
|
||||
import whisperx
|
||||
audio = whisperx.load_audio(temp_path)
|
||||
|
||||
# Check audio length and add a warning for short clips
|
||||
audio_length = len(audio) / 16000 # assuming 16kHz sample rate
|
||||
if audio_length < 1.0:
|
||||
logger.warning(f"Audio is very short ({audio_length:.2f}s), may affect transcription quality")
|
||||
|
||||
# Transcribe using WhisperX
|
||||
batch_size = 16 # adjust based on your GPU memory
|
||||
logger.info("Running WhisperX transcription...")
|
||||
|
||||
# Handle the warning about audio being shorter than 30s by suppressing it
|
||||
import warnings
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", message="audio is shorter than 30s")
|
||||
result = models.whisperx_model.transcribe(audio, batch_size=batch_size)
|
||||
|
||||
# Get the detected language
|
||||
language_code = result["language"]
|
||||
logger.info(f"Detected language: {language_code}")
|
||||
|
||||
# Check if alignment model needs to be loaded or updated
|
||||
if models.whisperx_align_model is None or language_code != models.last_language:
|
||||
# Clean up old models if they exist
|
||||
if models.whisperx_align_model is not None:
|
||||
del models.whisperx_align_model
|
||||
del models.whisperx_align_metadata
|
||||
if DEVICE == "cuda":
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Load new alignment model for the detected language
|
||||
logger.info(f"Loading alignment model for language: {language_code}")
|
||||
models.whisperx_align_model, models.whisperx_align_metadata = whisperx.load_align_model(
|
||||
language_code=language_code, device=DEVICE
|
||||
)
|
||||
models.last_language = language_code
|
||||
|
||||
# Align the transcript to get word-level timestamps
|
||||
if result["segments"] and len(result["segments"]) > 0:
|
||||
logger.info("Aligning transcript...")
|
||||
result = whisperx.align(
|
||||
result["segments"],
|
||||
models.whisperx_align_model,
|
||||
models.whisperx_align_metadata,
|
||||
audio,
|
||||
DEVICE,
|
||||
return_char_alignments=False
|
||||
)
|
||||
|
||||
# Process the segments for better output
|
||||
for segment in result["segments"]:
|
||||
# Round timestamps for better display
|
||||
segment["start"] = round(segment["start"], 2)
|
||||
segment["end"] = round(segment["end"], 2)
|
||||
# Add a confidence score if not present
|
||||
if "confidence" not in segment:
|
||||
segment["confidence"] = 1.0 # Default confidence
|
||||
|
||||
# Extract the full text from all segments
|
||||
user_text = ' '.join([segment['text'] for segment in result['segments']])
|
||||
|
||||
# If no text was recognized, don't process further
|
||||
if not user_text or len(user_text.strip()) == 0:
|
||||
with app.app_context():
|
||||
socketio.emit('error', {'message': 'No speech detected'}, room=session_id)
|
||||
return
|
||||
|
||||
logger.info(f"Transcription: {user_text}")
|
||||
|
||||
# Load audio for CSM input
|
||||
waveform, sample_rate = torchaudio.load(temp_path)
|
||||
|
||||
# Normalize to mono if needed
|
||||
if waveform.shape[0] > 1:
|
||||
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
||||
|
||||
# Resample to the CSM sample rate if needed
|
||||
if sample_rate != models.generator.sample_rate:
|
||||
waveform = torchaudio.functional.resample(
|
||||
waveform,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=models.generator.sample_rate
|
||||
)
|
||||
|
||||
# Add the user's message to conversation history
|
||||
user_segment = conversation.add_segment(
|
||||
text=user_text,
|
||||
speaker=speaker_id,
|
||||
audio=waveform.squeeze()
|
||||
)
|
||||
|
||||
# Send transcription to client with detailed segments
|
||||
with app.app_context():
|
||||
socketio.emit('transcription', {
|
||||
'text': user_text,
|
||||
'speaker': speaker_id,
|
||||
'segments': result['segments'] # Include the detailed segments with timestamps
|
||||
}, room=session_id)
|
||||
|
||||
# Generate AI response using Llama
|
||||
with app.app_context():
|
||||
socketio.emit('processing_status', {'status': 'generating'}, room=session_id)
|
||||
|
||||
# Create prompt from conversation history
|
||||
conversation_history = ""
|
||||
for segment in conversation.segments[-5:]: # Last 5 segments for context
|
||||
role = "User" if segment.speaker == 0 else "Assistant"
|
||||
conversation_history += f"{role}: {segment.text}\n"
|
||||
|
||||
# Add final prompt
|
||||
prompt = f"{conversation_history}Assistant: "
|
||||
|
||||
# Generate response with Llama
|
||||
try:
|
||||
# Ensure pad token is set
|
||||
if models.tokenizer.pad_token is None:
|
||||
models.tokenizer.pad_token = models.tokenizer.eos_token
|
||||
|
||||
input_tokens = models.tokenizer(
|
||||
prompt,
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
return_attention_mask=True
|
||||
)
|
||||
input_ids = input_tokens.input_ids.to(DEVICE)
|
||||
attention_mask = input_tokens.attention_mask.to(DEVICE)
|
||||
|
||||
with torch.no_grad():
|
||||
generated_ids = models.llm.generate(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_new_tokens=100,
|
||||
temperature=0.7,
|
||||
top_p=0.9,
|
||||
do_sample=True,
|
||||
pad_token_id=models.tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
# Decode the response
|
||||
response_text = models.tokenizer.decode(
|
||||
generated_ids[0][input_ids.shape[1]:],
|
||||
skip_special_tokens=True
|
||||
).strip()
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating response: {str(e)}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
response_text = "I'm sorry, I encountered an error while processing your request."
|
||||
|
||||
# Synthesize speech
|
||||
with app.app_context():
|
||||
socketio.emit('processing_status', {'status': 'synthesizing'}, room=session_id)
|
||||
|
||||
# Start sending the audio response
|
||||
socketio.emit('audio_response_start', {
|
||||
'text': response_text,
|
||||
'total_chunks': 1,
|
||||
'chunk_index': 0
|
||||
}, room=session_id)
|
||||
|
||||
# Define AI speaker ID
|
||||
ai_speaker_id = conversation.ai_speaker_id
|
||||
|
||||
# Generate audio
|
||||
audio_tensor = models.generator.generate(
|
||||
text=response_text,
|
||||
speaker=ai_speaker_id,
|
||||
context=conversation.get_context(),
|
||||
max_audio_length_ms=10_000,
|
||||
temperature=0.9
|
||||
)
|
||||
|
||||
# Add AI response to conversation history
|
||||
ai_segment = conversation.add_segment(
|
||||
text=response_text,
|
||||
speaker=ai_speaker_id,
|
||||
audio=audio_tensor
|
||||
)
|
||||
|
||||
# Convert audio to WAV format
|
||||
with io.BytesIO() as wav_io:
|
||||
torchaudio.save(
|
||||
wav_io,
|
||||
audio_tensor.unsqueeze(0).cpu(),
|
||||
models.generator.sample_rate,
|
||||
format="wav"
|
||||
)
|
||||
wav_io.seek(0)
|
||||
wav_data = wav_io.read()
|
||||
|
||||
# Convert WAV data to base64
|
||||
audio_base64 = f"data:audio/wav;base64,{base64.b64encode(wav_data).decode('utf-8')}"
|
||||
|
||||
# Send audio chunk to client
|
||||
with app.app_context():
|
||||
socketio.emit('audio_response_chunk', {
|
||||
'chunk': audio_base64,
|
||||
'chunk_index': 0,
|
||||
'total_chunks': 1,
|
||||
'is_last': True
|
||||
}, room=session_id)
|
||||
|
||||
# Signal completion
|
||||
socketio.emit('audio_response_complete', {
|
||||
'text': response_text
|
||||
}, room=session_id)
|
||||
|
||||
finally:
|
||||
# Clean up temp file
|
||||
if os.path.exists(temp_path):
|
||||
os.unlink(temp_path)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing audio: {str(e)}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
with app.app_context():
|
||||
socketio.emit('error', {'message': f'Error: {str(e)}'}, room=session_id)
|
||||
finally:
|
||||
# Reset processing flag
|
||||
conversation.is_processing = False
|
||||
|
||||
# Error handler
|
||||
@socketio.on_error()
|
||||
def error_handler(e):
|
||||
logger.error(f"SocketIO error: {str(e)}")
|
||||
|
||||
# Periodic cleanup of inactive sessions
|
||||
def cleanup_inactive_sessions():
|
||||
"""Remove sessions that have been inactive for too long"""
|
||||
current_time = time.time()
|
||||
inactive_timeout = 3600 # 1 hour
|
||||
|
||||
for session_id in list(active_conversations.keys()):
|
||||
conversation = active_conversations[session_id]
|
||||
if (current_time - conversation.last_activity > inactive_timeout and
|
||||
not conversation.is_processing):
|
||||
|
||||
logger.info(f"Cleaning up inactive session: {session_id}")
|
||||
|
||||
# Signal processing thread to terminate
|
||||
if session_id in user_queues:
|
||||
user_queues[session_id].put(None)
|
||||
|
||||
# Remove from active conversations
|
||||
del active_conversations[session_id]
|
||||
|
||||
# Start cleanup thread
|
||||
def start_cleanup_thread():
|
||||
while True:
|
||||
try:
|
||||
cleanup_inactive_sessions()
|
||||
except Exception as e:
|
||||
logger.error(f"Error in cleanup thread: {str(e)}")
|
||||
time.sleep(300) # Run every 5 minutes
|
||||
|
||||
cleanup_thread = threading.Thread(target=start_cleanup_thread, daemon=True)
|
||||
cleanup_thread.start()
|
||||
|
||||
# Start the server
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
port = int(os.environ.get('PORT', 5000))
|
||||
debug_mode = os.environ.get('DEBUG', 'False').lower() == 'true'
|
||||
logger.info(f"Starting server on port {port} (debug={debug_mode})")
|
||||
|
||||
print(f"Starting server on port {port} (debug={debug_mode})")
|
||||
print("Visit http://localhost:5000 to access the application")
|
||||
|
||||
socketio.run(app, host='0.0.0.0', port=port, debug=debug_mode, allow_unsafe_werkzeug=True)
|
||||
Reference in New Issue
Block a user