Server API and Webpage update
This commit is contained in:
@@ -9,7 +9,9 @@ import io
|
|||||||
import whisperx
|
import whisperx
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
from typing import List, Dict, Any, Optional
|
from typing import List, Dict, Any, Optional
|
||||||
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
|
||||||
|
from fastapi.responses import HTMLResponse, FileResponse
|
||||||
|
from fastapi.staticfiles import StaticFiles
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from generator import load_csm_1b, Segment
|
from generator import load_csm_1b, Segment
|
||||||
@@ -17,6 +19,8 @@ import uvicorn
|
|||||||
import time
|
import time
|
||||||
import gc
|
import gc
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
import socket
|
||||||
|
import requests
|
||||||
|
|
||||||
# Select device
|
# Select device
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
@@ -45,6 +49,32 @@ app.add_middleware(
|
|||||||
allow_headers=["*"],
|
allow_headers=["*"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Define the base directory
|
||||||
|
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
|
||||||
|
# Mount a static files directory if you have any static assets like CSS or JS
|
||||||
|
static_dir = os.path.join(base_dir, "static")
|
||||||
|
os.makedirs(static_dir, exist_ok=True) # Create the directory if it doesn't exist
|
||||||
|
app.mount("/static", StaticFiles(directory=static_dir), name="static")
|
||||||
|
|
||||||
|
# Define route to serve index.html as the main page
|
||||||
|
@app.get("/", response_class=HTMLResponse)
|
||||||
|
async def get_index():
|
||||||
|
try:
|
||||||
|
with open(os.path.join(base_dir, "index.html"), "r") as f:
|
||||||
|
return HTMLResponse(content=f.read())
|
||||||
|
except FileNotFoundError:
|
||||||
|
return HTMLResponse(content="<html><body><h1>Error: index.html not found</h1></body></html>")
|
||||||
|
|
||||||
|
# Add a favicon endpoint (optional, but good to have)
|
||||||
|
@app.get("/favicon.ico")
|
||||||
|
async def get_favicon():
|
||||||
|
favicon_path = os.path.join(static_dir, "favicon.ico")
|
||||||
|
if os.path.exists(favicon_path):
|
||||||
|
return FileResponse(favicon_path)
|
||||||
|
else:
|
||||||
|
return HTMLResponse(status_code=204) # No content
|
||||||
|
|
||||||
# Connection manager to handle multiple clients
|
# Connection manager to handle multiple clients
|
||||||
class ConnectionManager:
|
class ConnectionManager:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -259,6 +289,7 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
energy_window.clear()
|
energy_window.clear()
|
||||||
is_silence = False
|
is_silence = False
|
||||||
last_active_time = time.time()
|
last_active_time = time.time()
|
||||||
|
print(f"Streaming started with speaker ID: {speaker_id}")
|
||||||
await websocket.send_json({
|
await websocket.send_json({
|
||||||
"type": "streaming_status",
|
"type": "streaming_status",
|
||||||
"status": "started"
|
"status": "started"
|
||||||
@@ -269,6 +300,13 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
energy_window.append(chunk_energy)
|
energy_window.append(chunk_energy)
|
||||||
avg_energy = sum(energy_window) / len(energy_window)
|
avg_energy = sum(energy_window) / len(energy_window)
|
||||||
|
|
||||||
|
# Debug audio levels
|
||||||
|
if len(energy_window) >= 5: # Only start printing after we have enough samples
|
||||||
|
if avg_energy > SILENCE_THRESHOLD:
|
||||||
|
print(f"[AUDIO] Active sound detected - Energy: {avg_energy:.6f} (threshold: {SILENCE_THRESHOLD})")
|
||||||
|
else:
|
||||||
|
print(f"[AUDIO] Silence detected - Energy: {avg_energy:.6f} (threshold: {SILENCE_THRESHOLD})")
|
||||||
|
|
||||||
# Check if audio is silent
|
# Check if audio is silent
|
||||||
current_silence = avg_energy < SILENCE_THRESHOLD
|
current_silence = avg_energy < SILENCE_THRESHOLD
|
||||||
|
|
||||||
@@ -277,33 +315,53 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
# Transition to silence
|
# Transition to silence
|
||||||
is_silence = True
|
is_silence = True
|
||||||
last_active_time = time.time()
|
last_active_time = time.time()
|
||||||
|
print("[STREAM] Transition to silence detected")
|
||||||
elif is_silence and not current_silence:
|
elif is_silence and not current_silence:
|
||||||
# User started talking again
|
# User started talking again
|
||||||
is_silence = False
|
is_silence = False
|
||||||
|
print("[STREAM] User resumed speaking")
|
||||||
|
|
||||||
# Add chunk to buffer regardless of silence state
|
# Add chunk to buffer regardless of silence state
|
||||||
streaming_buffer.append(audio_chunk)
|
streaming_buffer.append(audio_chunk)
|
||||||
|
|
||||||
|
# Debug buffer size periodically
|
||||||
|
if len(streaming_buffer) % 10 == 0:
|
||||||
|
print(f"[BUFFER] Current size: {len(streaming_buffer)} chunks, ~{len(streaming_buffer)/5:.1f} seconds")
|
||||||
|
|
||||||
# Check if silence has persisted long enough to consider "stopped talking"
|
# Check if silence has persisted long enough to consider "stopped talking"
|
||||||
silence_elapsed = time.time() - last_active_time
|
silence_elapsed = time.time() - last_active_time
|
||||||
|
|
||||||
if is_silence and silence_elapsed >= SILENCE_DURATION_SEC and len(streaming_buffer) > 0:
|
if is_silence and silence_elapsed >= SILENCE_DURATION_SEC and len(streaming_buffer) > 0:
|
||||||
# User has stopped talking - process the collected audio
|
# User has stopped talking - process the collected audio
|
||||||
|
print(f"[STREAM] Processing audio after {silence_elapsed:.2f}s of silence")
|
||||||
|
print(f"[STREAM] Processing {len(streaming_buffer)} audio chunks (~{len(streaming_buffer)/5:.1f} seconds)")
|
||||||
|
|
||||||
full_audio = torch.cat(streaming_buffer, dim=0)
|
full_audio = torch.cat(streaming_buffer, dim=0)
|
||||||
|
|
||||||
|
# Log audio statistics
|
||||||
|
audio_duration = len(full_audio) / generator.sample_rate
|
||||||
|
audio_min = torch.min(full_audio).item()
|
||||||
|
audio_max = torch.max(full_audio).item()
|
||||||
|
audio_mean = torch.mean(full_audio).item()
|
||||||
|
print(f"[AUDIO] Processed audio - Duration: {audio_duration:.2f}s, Min: {audio_min:.4f}, Max: {audio_max:.4f}, Mean: {audio_mean:.4f}")
|
||||||
|
|
||||||
# Process with WhisperX speech-to-text
|
# Process with WhisperX speech-to-text
|
||||||
|
print("[ASR] Starting transcription with WhisperX...")
|
||||||
transcribed_text = await transcribe_audio(full_audio)
|
transcribed_text = await transcribe_audio(full_audio)
|
||||||
|
|
||||||
# Log the transcription
|
# Log the transcription
|
||||||
print(f"Transcribed text: '{transcribed_text}'")
|
print(f"[ASR] Transcribed text: '{transcribed_text}'")
|
||||||
|
|
||||||
# Add to conversation context
|
# Add to conversation context
|
||||||
if transcribed_text:
|
if transcribed_text:
|
||||||
|
print(f"[DIALOG] Adding user utterance to context: '{transcribed_text}'")
|
||||||
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
||||||
context_segments.append(user_segment)
|
context_segments.append(user_segment)
|
||||||
|
|
||||||
# Generate a contextual response
|
# Generate a contextual response
|
||||||
|
print("[DIALOG] Generating response...")
|
||||||
response_text = await generate_response(transcribed_text, context_segments)
|
response_text = await generate_response(transcribed_text, context_segments)
|
||||||
|
print(f"[DIALOG] Response text: '{response_text}'")
|
||||||
|
|
||||||
# Send the transcribed text to client
|
# Send the transcribed text to client
|
||||||
await websocket.send_json({
|
await websocket.send_json({
|
||||||
@@ -312,12 +370,14 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
})
|
})
|
||||||
|
|
||||||
# Generate audio for the response
|
# Generate audio for the response
|
||||||
|
print("[TTS] Generating speech for response...")
|
||||||
audio_tensor = generator.generate(
|
audio_tensor = generator.generate(
|
||||||
text=response_text,
|
text=response_text,
|
||||||
speaker=1 if speaker_id == 0 else 0, # Use opposite speaker
|
speaker=1 if speaker_id == 0 else 0, # Use opposite speaker
|
||||||
context=context_segments,
|
context=context_segments,
|
||||||
max_audio_length_ms=10_000,
|
max_audio_length_ms=10_000,
|
||||||
)
|
)
|
||||||
|
print(f"[TTS] Generated audio length: {len(audio_tensor)/generator.sample_rate:.2f}s")
|
||||||
|
|
||||||
# Add response to context
|
# Add response to context
|
||||||
ai_segment = Segment(
|
ai_segment = Segment(
|
||||||
@@ -326,15 +386,18 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
audio=audio_tensor
|
audio=audio_tensor
|
||||||
)
|
)
|
||||||
context_segments.append(ai_segment)
|
context_segments.append(ai_segment)
|
||||||
|
print(f"[DIALOG] Context now has {len(context_segments)} segments")
|
||||||
|
|
||||||
# Convert audio to base64 and send back to client
|
# Convert audio to base64 and send back to client
|
||||||
audio_base64 = await encode_audio_data(audio_tensor)
|
audio_base64 = await encode_audio_data(audio_tensor)
|
||||||
|
print("[STREAM] Sending audio response to client")
|
||||||
await websocket.send_json({
|
await websocket.send_json({
|
||||||
"type": "audio_response",
|
"type": "audio_response",
|
||||||
"text": response_text,
|
"text": response_text,
|
||||||
"audio": audio_base64
|
"audio": audio_base64
|
||||||
})
|
})
|
||||||
else:
|
else:
|
||||||
|
print("[ASR] Transcription failed or returned empty text")
|
||||||
# If transcription failed, send a generic response
|
# If transcription failed, send a generic response
|
||||||
await websocket.send_json({
|
await websocket.send_json({
|
||||||
"type": "error",
|
"type": "error",
|
||||||
@@ -346,17 +409,20 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
energy_window.clear()
|
energy_window.clear()
|
||||||
is_silence = False
|
is_silence = False
|
||||||
last_active_time = time.time()
|
last_active_time = time.time()
|
||||||
|
print("[STREAM] Buffer cleared, ready for next utterance")
|
||||||
|
|
||||||
# If buffer gets too large without silence, process it anyway
|
# If buffer gets too large without silence, process it anyway
|
||||||
# This prevents memory issues with very long streams
|
# This prevents memory issues with very long streams
|
||||||
elif len(streaming_buffer) >= 30: # ~6 seconds of audio at 5 chunks/sec
|
elif len(streaming_buffer) >= 30: # ~6 seconds of audio at 5 chunks/sec
|
||||||
print("Buffer limit reached, processing audio")
|
print("[BUFFER] Maximum buffer size reached, processing audio")
|
||||||
full_audio = torch.cat(streaming_buffer, dim=0)
|
full_audio = torch.cat(streaming_buffer, dim=0)
|
||||||
|
|
||||||
# Process with WhisperX speech-to-text
|
# Process with WhisperX speech-to-text
|
||||||
|
print("[ASR] Starting forced transcription of long audio...")
|
||||||
transcribed_text = await transcribe_audio(full_audio)
|
transcribed_text = await transcribe_audio(full_audio)
|
||||||
|
|
||||||
if transcribed_text:
|
if transcribed_text:
|
||||||
|
print(f"[ASR] Transcribed long audio: '{transcribed_text}'")
|
||||||
context_segments.append(Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio))
|
context_segments.append(Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio))
|
||||||
|
|
||||||
# Send the transcribed text to client
|
# Send the transcribed text to client
|
||||||
@@ -364,11 +430,17 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
"type": "transcription",
|
"type": "transcription",
|
||||||
"text": transcribed_text + " (processing continued speech...)"
|
"text": transcribed_text + " (processing continued speech...)"
|
||||||
})
|
})
|
||||||
|
else:
|
||||||
|
print("[ASR] No transcription from long audio")
|
||||||
|
|
||||||
streaming_buffer = []
|
streaming_buffer = []
|
||||||
|
print("[BUFFER] Buffer cleared due to size limit")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error processing streaming audio: {str(e)}")
|
print(f"[ERROR] Processing streaming audio: {str(e)}")
|
||||||
|
# Print traceback for more detailed error information
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
await websocket.send_json({
|
await websocket.send_json({
|
||||||
"type": "error",
|
"type": "error",
|
||||||
"message": f"Error processing streaming audio: {str(e)}"
|
"message": f"Error processing streaming audio: {str(e)}"
|
||||||
@@ -412,6 +484,53 @@ async def websocket_endpoint(websocket: WebSocket):
|
|||||||
pass
|
pass
|
||||||
manager.disconnect(websocket)
|
manager.disconnect(websocket)
|
||||||
|
|
||||||
|
# Add this function to get the public IP address
|
||||||
|
def get_public_ip():
|
||||||
|
"""Get the server's public IP address using an external service"""
|
||||||
|
try:
|
||||||
|
# Try multiple services in case one is down
|
||||||
|
services = [
|
||||||
|
"https://api.ipify.org",
|
||||||
|
"https://ifconfig.me/ip",
|
||||||
|
"https://checkip.amazonaws.com",
|
||||||
|
]
|
||||||
|
|
||||||
|
for service in services:
|
||||||
|
try:
|
||||||
|
response = requests.get(service, timeout=3)
|
||||||
|
if response.status_code == 200:
|
||||||
|
return response.text.strip()
|
||||||
|
except:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Fallback to socket if external services fail
|
||||||
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||||
|
try:
|
||||||
|
# Doesn't need to be reachable, just used to determine interface
|
||||||
|
s.connect(('8.8.8.8', 1))
|
||||||
|
local_ip = s.getsockname()[0]
|
||||||
|
return local_ip
|
||||||
|
except:
|
||||||
|
return "localhost"
|
||||||
|
finally:
|
||||||
|
s.close()
|
||||||
|
except:
|
||||||
|
return "Could not determine IP address"
|
||||||
|
|
||||||
|
# Update the __main__ block
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
public_ip = get_public_ip()
|
||||||
|
print(f"\n{'='*50}")
|
||||||
|
print(f"💬 Sesame AI Voice Chat Server")
|
||||||
|
print(f"{'='*50}")
|
||||||
|
print(f"📡 Server Information:")
|
||||||
|
print(f" - Public IP: http://{public_ip}:8000")
|
||||||
|
print(f" - Local URL: http://localhost:8000")
|
||||||
|
print(f" - WebSocket: ws://{public_ip}:8000/ws")
|
||||||
|
print(f"{'='*50}")
|
||||||
|
print(f"🌐 Connect from web browsers using: http://{public_ip}:8000")
|
||||||
|
print(f"🔧 Serving index.html from: {os.path.join(base_dir, 'index.html')}")
|
||||||
|
print(f"{'='*50}\n")
|
||||||
|
|
||||||
|
# Start the server
|
||||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
uvicorn.run(app, host="0.0.0.0", port=8000)
|
||||||
Reference in New Issue
Block a user