Files
HooHacks-12/Backend/server.py
2025-03-30 00:24:26 -04:00

799 lines
31 KiB
Python

import os
import base64
import json
import time
import math
import gc
import logging
import numpy as np
import torch
import torchaudio
import whisperx
from io import BytesIO
from typing import List, Dict, Any, Optional
from flask import Flask, request, send_from_directory, Response
from flask_cors import CORS
from flask_socketio import SocketIO, emit, disconnect
from generator import load_csm_1b, Segment
from collections import deque
from threading import Lock
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("sesame-server")
# CUDA Environment Setup
def setup_cuda_environment():
"""Set up CUDA environment with proper error handling"""
# Search for CUDA libraries in common locations
cuda_lib_dirs = [
"/usr/local/cuda/lib64",
"/usr/lib/x86_64-linux-gnu",
"/usr/local/cuda/extras/CUPTI/lib64"
]
# Add directories to LD_LIBRARY_PATH if they exist
current_ld_path = os.environ.get('LD_LIBRARY_PATH', '')
for cuda_dir in cuda_lib_dirs:
if os.path.exists(cuda_dir) and cuda_dir not in current_ld_path:
if current_ld_path:
os.environ['LD_LIBRARY_PATH'] = f"{current_ld_path}:{cuda_dir}"
else:
os.environ['LD_LIBRARY_PATH'] = cuda_dir
current_ld_path = os.environ['LD_LIBRARY_PATH']
logger.info(f"LD_LIBRARY_PATH set to: {os.environ.get('LD_LIBRARY_PATH', 'not set')}")
# Determine best compute device
device = "cpu"
compute_type = "int8"
try:
# Set CUDA preferences
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Limit to first GPU only
# Try enabling TF32 precision if available
try:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
except Exception as e:
logger.warning(f"Could not set advanced CUDA options: {e}")
# Test if CUDA is functional
if torch.cuda.is_available():
try:
# Test basic CUDA operations
x = torch.rand(10, device="cuda")
y = x + x
del x, y
torch.cuda.empty_cache()
device = "cuda"
compute_type = "float16"
logger.info("CUDA is fully functional")
except Exception as e:
logger.warning(f"CUDA available but not working correctly: {e}")
device = "cpu"
else:
logger.info("CUDA is not available, using CPU")
except Exception as e:
logger.error(f"Error setting up computing environment: {e}")
return device, compute_type
# Set up the compute environment
device, compute_type = setup_cuda_environment()
# Constants and Configuration
SILENCE_THRESHOLD = 0.01
SILENCE_DURATION_SEC = 0.75
MAX_BUFFER_SIZE = 30 # Maximum chunks to buffer before processing
CHUNK_SIZE_MS = 500 # Size of audio chunks when streaming responses
# Define the base directory and static files directory
base_dir = os.path.dirname(os.path.abspath(__file__))
static_dir = os.path.join(base_dir, "static")
os.makedirs(static_dir, exist_ok=True)
# Model Loading Functions
def load_speech_models():
"""Load all required speech models with fallbacks"""
# Load speech generation model (Sesame CSM)
try:
logger.info(f"Loading Sesame CSM model on {device}...")
generator = load_csm_1b(device=device)
logger.info("Sesame CSM model loaded successfully")
except Exception as e:
logger.error(f"Error loading Sesame CSM on {device}: {e}")
if device == "cuda":
try:
logger.info("Trying to load Sesame CSM on CPU instead...")
generator = load_csm_1b(device="cpu")
logger.info("Sesame CSM model loaded on CPU successfully")
except Exception as cpu_error:
logger.critical(f"Failed to load speech synthesis model: {cpu_error}")
raise RuntimeError("Failed to load speech synthesis model")
else:
raise RuntimeError("Failed to load speech synthesis model on any device")
# Load ASR model (WhisperX)
try:
logger.info("Loading WhisperX model...")
# Start with the tiny model on CPU for reliable initialization
asr_model = whisperx.load_model("tiny", "cpu", compute_type="int8")
logger.info("WhisperX 'tiny' model loaded on CPU successfully")
# Try upgrading to GPU if available
if device == "cuda":
try:
logger.info("Trying to load WhisperX on CUDA...")
# Test with a tiny model first
test_audio = torch.zeros(16000) # 1 second of silence
cuda_model = whisperx.load_model("tiny", "cuda", compute_type="float16")
# Test the model with real inference
_ = cuda_model.transcribe(test_audio.numpy(), batch_size=1)
asr_model = cuda_model
logger.info("WhisperX model running on CUDA successfully")
# Try to upgrade to small model
try:
small_model = whisperx.load_model("small", "cuda", compute_type="float16")
_ = small_model.transcribe(test_audio.numpy(), batch_size=1)
asr_model = small_model
logger.info("WhisperX 'small' model loaded on CUDA successfully")
except Exception as e:
logger.warning(f"Staying with 'tiny' model on CUDA: {e}")
except Exception as e:
logger.warning(f"CUDA loading failed, staying with CPU model: {e}")
except Exception as e:
logger.error(f"Error loading WhisperX model: {e}")
# Create a minimal dummy model as last resort
class DummyModel:
def __init__(self):
self.device = "cpu"
def transcribe(self, *args, **kwargs):
return {"segments": [{"text": "Speech recognition currently unavailable."}]}
asr_model = DummyModel()
logger.warning("Using dummy transcription model - ASR functionality limited")
return generator, asr_model
# Load speech models
generator, asr_model = load_speech_models()
# Set up Flask and Socket.IO
app = Flask(__name__)
CORS(app)
socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet')
# Socket connection management
thread_lock = Lock()
active_clients = {} # Map client_id to client context
# Audio Utility Functions
def decode_audio_data(audio_data: str) -> torch.Tensor:
"""Decode base64 audio data to a torch tensor with improved error handling"""
try:
# Skip empty audio data
if not audio_data or len(audio_data) < 100:
logger.warning("Empty or too short audio data received")
return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence
# Extract the actual base64 content
if ',' in audio_data:
audio_data = audio_data.split(',')[1]
# Decode base64 audio data
try:
binary_data = base64.b64decode(audio_data)
logger.debug(f"Decoded base64 data: {len(binary_data)} bytes")
# Check if we have enough data for a valid WAV
if len(binary_data) < 44: # WAV header is 44 bytes
logger.warning("Data too small to be a valid WAV file")
return torch.zeros(generator.sample_rate // 2)
except Exception as e:
logger.error(f"Base64 decoding error: {e}")
return torch.zeros(generator.sample_rate // 2)
# Multiple approaches to handle audio data
audio_tensor = None
sample_rate = None
# Approach 1: Direct loading with torchaudio
try:
with BytesIO(binary_data) as temp_file:
temp_file.seek(0)
audio_tensor, sample_rate = torchaudio.load(temp_file, format="wav")
logger.debug(f"Loaded audio: shape={audio_tensor.shape}, rate={sample_rate}Hz")
# Validate tensor
if audio_tensor.numel() == 0 or torch.isnan(audio_tensor).any():
raise ValueError("Invalid audio tensor")
except Exception as e:
logger.warning(f"Direct loading failed: {e}")
# Approach 2: Using wave module and numpy
try:
temp_path = os.path.join(base_dir, f"temp_{time.time()}.wav")
with open(temp_path, 'wb') as f:
f.write(binary_data)
import wave
with wave.open(temp_path, 'rb') as wf:
n_channels = wf.getnchannels()
sample_width = wf.getsampwidth()
sample_rate = wf.getframerate()
n_frames = wf.getnframes()
frames = wf.readframes(n_frames)
# Convert to numpy array
if sample_width == 2: # 16-bit audio
data = np.frombuffer(frames, dtype=np.int16).astype(np.float32) / 32768.0
elif sample_width == 1: # 8-bit audio
data = np.frombuffer(frames, dtype=np.uint8).astype(np.float32) / 128.0 - 1.0
else:
raise ValueError(f"Unsupported sample width: {sample_width}")
# Convert to mono if needed
if n_channels > 1:
data = data.reshape(-1, n_channels)
data = data.mean(axis=1)
# Convert to torch tensor
audio_tensor = torch.from_numpy(data)
logger.info(f"Loaded audio using wave: shape={audio_tensor.shape}")
# Clean up temp file
if os.path.exists(temp_path):
os.remove(temp_path)
except Exception as e2:
logger.error(f"All audio loading methods failed: {e2}")
return torch.zeros(generator.sample_rate // 2)
# Format corrections
if audio_tensor is None:
return torch.zeros(generator.sample_rate // 2)
# Ensure audio is mono
if len(audio_tensor.shape) > 1 and audio_tensor.shape[0] > 1:
audio_tensor = torch.mean(audio_tensor, dim=0)
# Ensure 1D tensor
audio_tensor = audio_tensor.squeeze()
# Resample if needed
if sample_rate != generator.sample_rate:
try:
logger.debug(f"Resampling from {sample_rate}Hz to {generator.sample_rate}Hz")
resampler = torchaudio.transforms.Resample(
orig_freq=sample_rate,
new_freq=generator.sample_rate
)
audio_tensor = resampler(audio_tensor)
except Exception as e:
logger.warning(f"Resampling error: {e}")
# Normalize audio to avoid issues
if torch.abs(audio_tensor).max() > 0:
audio_tensor = audio_tensor / torch.abs(audio_tensor).max()
return audio_tensor
except Exception as e:
logger.error(f"Unhandled error in decode_audio_data: {e}")
return torch.zeros(generator.sample_rate // 2)
def encode_audio_data(audio_tensor: torch.Tensor) -> str:
"""Encode torch tensor audio to base64 string"""
try:
buf = BytesIO()
torchaudio.save(buf, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
buf.seek(0)
audio_base64 = base64.b64encode(buf.read()).decode('utf-8')
return f"data:audio/wav;base64,{audio_base64}"
except Exception as e:
logger.error(f"Error encoding audio: {e}")
# Return a minimal silent audio file
silence = torch.zeros(generator.sample_rate // 2).unsqueeze(0)
buf = BytesIO()
torchaudio.save(buf, silence, generator.sample_rate, format="wav")
buf.seek(0)
return f"data:audio/wav;base64,{base64.b64encode(buf.read()).decode('utf-8')}"
def transcribe_audio(audio_tensor: torch.Tensor) -> str:
"""Transcribe audio using WhisperX with robust error handling"""
global asr_model
try:
# Save the tensor to a temporary file
temp_path = os.path.join(base_dir, f"temp_audio_{time.time()}.wav")
torchaudio.save(temp_path, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate)
logger.info(f"Transcribing audio file: {os.path.getsize(temp_path)} bytes")
# Load the audio for WhisperX
try:
audio = whisperx.load_audio(temp_path)
except Exception as e:
logger.warning(f"WhisperX load_audio failed: {e}")
# Fall back to manual loading
import soundfile as sf
audio, sr = sf.read(temp_path)
if sr != 16000: # WhisperX expects 16kHz audio
from scipy import signal
audio = signal.resample(audio, int(len(audio) * 16000 / sr))
# Transcribe with error handling
try:
result = asr_model.transcribe(audio, batch_size=4)
except RuntimeError as e:
if "CUDA" in str(e) or "libcudnn" in str(e):
logger.warning(f"CUDA error in transcription, falling back to CPU: {e}")
try:
# Try CPU model
cpu_model = whisperx.load_model("tiny", "cpu", compute_type="int8")
result = cpu_model.transcribe(audio, batch_size=1)
# Update the global model if the original one is broken
asr_model = cpu_model
except Exception as cpu_e:
logger.error(f"CPU fallback failed: {cpu_e}")
return "I'm having trouble processing audio right now."
else:
raise
finally:
# Clean up
if os.path.exists(temp_path):
os.remove(temp_path)
# Extract text from segments
if result["segments"] and len(result["segments"]) > 0:
transcription = " ".join([segment["text"] for segment in result["segments"]])
logger.info(f"Transcription: '{transcription.strip()}'")
return transcription.strip()
return ""
except Exception as e:
logger.error(f"Error in transcription: {e}")
if os.path.exists(temp_path):
os.remove(temp_path)
return "I heard something but couldn't understand it."
def generate_response(text: str, conversation_history: List[Segment]) -> str:
"""Generate a contextual response based on the transcribed text"""
# Simple response logic - can be replaced with a more sophisticated LLM
responses = {
"hello": "Hello there! How can I help you today?",
"hi": "Hi there! What can I do for you?",
"how are you": "I'm doing well, thanks for asking! How about you?",
"what is your name": "I'm Sesame, your voice assistant. How can I help you?",
"who are you": "I'm Sesame, an AI voice assistant. I'm here to chat with you!",
"bye": "Goodbye! It was nice chatting with you.",
"thank you": "You're welcome! Is there anything else I can help with?",
"weather": "I don't have real-time weather data, but I hope it's nice where you are!",
"help": "I can chat with you using natural voice. Just speak normally and I'll respond.",
"what can you do": "I can have a conversation with you, answer questions, and provide assistance with various topics.",
}
text_lower = text.lower()
# Check for matching keywords
for key, response in responses.items():
if key in text_lower:
return response
# Default responses based on text length
if not text:
return "I didn't catch that. Could you please repeat?"
elif len(text) < 10:
return "Thanks for your message. Could you elaborate a bit more?"
else:
return f"I understand you said '{text}'. That's interesting! Can you tell me more about that?"
# Flask Routes
@app.route('/')
def index():
return send_from_directory(base_dir, 'index.html')
@app.route('/favicon.ico')
def favicon():
if os.path.exists(os.path.join(static_dir, 'favicon.ico')):
return send_from_directory(static_dir, 'favicon.ico')
return Response(status=204)
@app.route('/voice-chat.js')
def voice_chat_js():
return send_from_directory(base_dir, 'voice-chat.js')
@app.route('/static/<path:path>')
def serve_static(path):
return send_from_directory(static_dir, path)
# Socket.IO Event Handlers
@socketio.on('connect')
def handle_connect():
client_id = request.sid
logger.info(f"Client connected: {client_id}")
# Initialize client context
active_clients[client_id] = {
'context_segments': [],
'streaming_buffer': [],
'is_streaming': False,
'is_silence': False,
'last_active_time': time.time(),
'energy_window': deque(maxlen=10)
}
emit('status', {'type': 'connected', 'message': 'Connected to server'})
@socketio.on('disconnect')
def handle_disconnect():
client_id = request.sid
if client_id in active_clients:
del active_clients[client_id]
logger.info(f"Client disconnected: {client_id}")
@socketio.on('generate')
def handle_generate(data):
client_id = request.sid
if client_id not in active_clients:
emit('error', {'message': 'Client not registered'})
return
try:
text = data.get('text', '')
speaker_id = data.get('speaker', 0)
logger.info(f"Generating audio for: '{text}' with speaker {speaker_id}")
# Generate audio response
audio_tensor = generator.generate(
text=text,
speaker=speaker_id,
context=active_clients[client_id]['context_segments'],
max_audio_length_ms=10_000,
)
# Add to conversation context
active_clients[client_id]['context_segments'].append(
Segment(text=text, speaker=speaker_id, audio=audio_tensor)
)
# Convert audio to base64 and send back to client
audio_base64 = encode_audio_data(audio_tensor)
emit('audio_response', {
'type': 'audio_response',
'audio': audio_base64,
'text': text
})
except Exception as e:
logger.error(f"Error generating audio: {e}")
emit('error', {
'type': 'error',
'message': f"Error generating audio: {str(e)}"
})
@socketio.on('add_to_context')
def handle_add_to_context(data):
client_id = request.sid
if client_id not in active_clients:
emit('error', {'message': 'Client not registered'})
return
try:
text = data.get('text', '')
speaker_id = data.get('speaker', 0)
audio_data = data.get('audio', '')
# Convert received audio to tensor
audio_tensor = decode_audio_data(audio_data)
# Add to conversation context
active_clients[client_id]['context_segments'].append(
Segment(text=text, speaker=speaker_id, audio=audio_tensor)
)
emit('context_updated', {
'type': 'context_updated',
'message': 'Audio added to context'
})
except Exception as e:
logger.error(f"Error adding to context: {e}")
emit('error', {
'type': 'error',
'message': f"Error processing audio: {str(e)}"
})
@socketio.on('clear_context')
def handle_clear_context():
client_id = request.sid
if client_id in active_clients:
active_clients[client_id]['context_segments'] = []
emit('context_updated', {
'type': 'context_updated',
'message': 'Context cleared'
})
@socketio.on('stream_audio')
def handle_stream_audio(data):
client_id = request.sid
if client_id not in active_clients:
emit('error', {'message': 'Client not registered'})
return
client = active_clients[client_id]
try:
speaker_id = data.get('speaker', 0)
audio_data = data.get('audio', '')
# Skip if no audio data (might be just a connection test)
if not audio_data:
logger.debug("Empty audio data received, ignoring")
return
# Convert received audio to tensor
audio_chunk = decode_audio_data(audio_data)
# Start streaming mode if not already started
if not client['is_streaming']:
client['is_streaming'] = True
client['streaming_buffer'] = []
client['energy_window'].clear()
client['is_silence'] = False
client['last_active_time'] = time.time()
logger.info(f"[{client_id[:8]}] Streaming started with speaker ID: {speaker_id}")
emit('streaming_status', {
'type': 'streaming_status',
'status': 'started'
})
# Calculate audio energy for silence detection
chunk_energy = torch.mean(torch.abs(audio_chunk)).item()
client['energy_window'].append(chunk_energy)
avg_energy = sum(client['energy_window']) / len(client['energy_window'])
# Check if audio is silent
current_silence = avg_energy < SILENCE_THRESHOLD
# Track silence transition
if not client['is_silence'] and current_silence:
# Transition to silence
client['is_silence'] = True
client['last_active_time'] = time.time()
elif client['is_silence'] and not current_silence:
# User started talking again
client['is_silence'] = False
# Add chunk to buffer regardless of silence state
client['streaming_buffer'].append(audio_chunk)
# Check if silence has persisted long enough to consider "stopped talking"
silence_elapsed = time.time() - client['last_active_time']
if client['is_silence'] and silence_elapsed >= SILENCE_DURATION_SEC and len(client['streaming_buffer']) > 0:
# User has stopped talking - process the collected audio
logger.info(f"[{client_id[:8]}] Processing audio after {silence_elapsed:.2f}s of silence")
process_complete_utterance(client_id, client, speaker_id)
# If buffer gets too large without silence, process it anyway
elif len(client['streaming_buffer']) >= MAX_BUFFER_SIZE:
logger.info(f"[{client_id[:8]}] Processing long audio segment without silence")
process_complete_utterance(client_id, client, speaker_id, is_incomplete=True)
# Keep half of the buffer for context (sliding window approach)
half_point = len(client['streaming_buffer']) // 2
client['streaming_buffer'] = client['streaming_buffer'][half_point:]
except Exception as e:
import traceback
traceback.print_exc()
logger.error(f"Error processing streaming audio: {e}")
emit('error', {
'type': 'error',
'message': f"Error processing streaming audio: {str(e)}"
})
def process_complete_utterance(client_id, client, speaker_id, is_incomplete=False):
"""Process a complete utterance (after silence or buffer limit)"""
try:
# Combine audio chunks
full_audio = torch.cat(client['streaming_buffer'], dim=0)
# Process with speech-to-text
logger.info(f"[{client_id[:8]}] Starting transcription...")
transcribed_text = transcribe_audio(full_audio)
# Add suffix for incomplete utterances
if is_incomplete:
transcribed_text += " (processing continued speech...)"
# Log the transcription
logger.info(f"[{client_id[:8]}] Transcribed: '{transcribed_text}'")
# Handle the transcription result
if transcribed_text:
# Add user message to context
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
client['context_segments'].append(user_segment)
# Send the transcribed text to client
emit('transcription', {
'type': 'transcription',
'text': transcribed_text
}, room=client_id)
# Only generate a response if this is a complete utterance
if not is_incomplete:
# Generate a contextual response
response_text = generate_response(transcribed_text, client['context_segments'])
logger.info(f"[{client_id[:8]}] Generating response: '{response_text}'")
# Let the client know we're processing
emit('processing_status', {
'type': 'processing_status',
'status': 'generating_audio',
'message': 'Generating audio response...'
}, room=client_id)
# Generate audio for the response
try:
# Use a different speaker than the user
ai_speaker_id = 1 if speaker_id == 0 else 0
# Generate the full response
audio_tensor = generator.generate(
text=response_text,
speaker=ai_speaker_id,
context=client['context_segments'],
max_audio_length_ms=10_000,
)
# Add response to context
ai_segment = Segment(
text=response_text,
speaker=ai_speaker_id,
audio=audio_tensor
)
client['context_segments'].append(ai_segment)
# Convert audio to base64 and send back to client
audio_base64 = encode_audio_data(audio_tensor)
emit('audio_response', {
'type': 'audio_response',
'text': response_text,
'audio': audio_base64
}, room=client_id)
logger.info(f"[{client_id[:8]}] Audio response sent")
except Exception as e:
logger.error(f"Error generating audio response: {e}")
emit('error', {
'type': 'error',
'message': "Sorry, there was an error generating the audio response."
}, room=client_id)
else:
# If transcription failed, send a notification
emit('error', {
'type': 'error',
'message': "Sorry, I couldn't understand what you said. Could you try again?"
}, room=client_id)
# Only clear buffer for complete utterances
if not is_incomplete:
# Reset state
client['streaming_buffer'] = []
client['energy_window'].clear()
client['is_silence'] = False
client['last_active_time'] = time.time()
except Exception as e:
logger.error(f"Error processing utterance: {e}")
emit('error', {
'type': 'error',
'message': f"Error processing audio: {str(e)}"
}, room=client_id)
@socketio.on('stop_streaming')
def handle_stop_streaming(data):
client_id = request.sid
if client_id not in active_clients:
return
client = active_clients[client_id]
client['is_streaming'] = False
if client['streaming_buffer'] and len(client['streaming_buffer']) > 5:
# Process any remaining audio in the buffer
logger.info(f"[{client_id[:8]}] Processing final audio buffer on stop")
process_complete_utterance(client_id, client, data.get("speaker", 0))
client['streaming_buffer'] = []
emit('streaming_status', {
'type': 'streaming_status',
'status': 'stopped'
})
def stream_audio_to_client(client_id, audio_tensor, text, speaker_id, chunk_size_ms=CHUNK_SIZE_MS):
"""Stream audio to client in chunks to simulate real-time generation"""
try:
if client_id not in active_clients:
logger.warning(f"Client {client_id} not found for streaming")
return
# Calculate chunk size in samples
chunk_size = int(generator.sample_rate * chunk_size_ms / 1000)
total_chunks = math.ceil(audio_tensor.size(0) / chunk_size)
logger.info(f"Streaming audio in {total_chunks} chunks of {chunk_size_ms}ms each")
# Send initial response with text but no audio yet
socketio.emit('audio_response_start', {
'type': 'audio_response_start',
'text': text,
'total_chunks': total_chunks
}, room=client_id)
# Stream each chunk
for i in range(total_chunks):
start_idx = i * chunk_size
end_idx = min(start_idx + chunk_size, audio_tensor.size(0))
# Extract chunk
chunk = audio_tensor[start_idx:end_idx]
# Encode chunk
chunk_base64 = encode_audio_data(chunk)
# Send chunk
socketio.emit('audio_response_chunk', {
'type': 'audio_response_chunk',
'chunk_index': i,
'total_chunks': total_chunks,
'audio': chunk_base64,
'is_last': i == total_chunks - 1
}, room=client_id)
# Brief pause between chunks to simulate streaming
time.sleep(0.1)
# Send completion message
socketio.emit('audio_response_complete', {
'type': 'audio_response_complete',
'text': text
}, room=client_id)
logger.info(f"Audio streaming complete: {total_chunks} chunks sent")
except Exception as e:
logger.error(f"Error streaming audio to client: {e}")
import traceback
traceback.print_exc()
# Main server start
if __name__ == "__main__":
print(f"\n{'='*60}")
print(f"🔊 Sesame AI Voice Chat Server")
print(f"{'='*60}")
print(f"📡 Server Information:")
print(f" - Local URL: http://localhost:5000")
print(f" - Network URL: http://<your-ip-address>:5000")
print(f"{'='*60}")
print(f"🌐 Device: {device.upper()}")
print(f"🧠 Models: Sesame CSM + WhisperX ASR")
print(f"🔧 Serving from: {os.path.join(base_dir, 'index.html')}")
print(f"{'='*60}")
print(f"Ready to receive connections! Press Ctrl+C to stop the server.\n")
socketio.run(app, host="0.0.0.0", port=5000, debug=False)