Files
2025-10-24 02:07:59 -04:00

29 lines
942 B
Python
Executable File

from inference import get_model
import supervision as sv
import cv2
# define the image url to use for inference
image_file = "taylor-swift-album-1989.jpeg"
image = cv2.imread(image_file)
# load a pre-trained yolov8n model
model = get_model(model_id="taylor-swift-records/3")
# run inference on our chosen image, image can be a url, a numpy array, a PIL image, etc.
results = model.infer(image)[0]
# load the results into the supervision Detections api
detections = sv.Detections.from_inference(results)
# create supervision annotators
bounding_box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator()
# annotate the image with our inference results
annotated_image = bounding_box_annotator.annotate(
scene=image, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections)
# display the image
sv.plot_image(annotated_image)