fixed post request

This commit is contained in:
samarthjain2023
2025-09-28 04:18:22 -04:00
parent fbb6953473
commit 4da975110b
13 changed files with 529 additions and 893 deletions

View File

@@ -1,6 +1,7 @@
import os
import time
import torch
import json
from torch import nn, optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
@@ -52,18 +53,106 @@ def train(dataset_root, epochs=3, batch_size=16, lr=1e-3, device=None, num_class
print(f'Saved preprocess meta to {meta_path}')
except Exception:
pass
# ensure model_num_classes has a defined value for later use
model_num_classes = None
# ---- new: generate kmeans labels when requested ----
if generate_labels and label_method == 'kmeans':
try:
import numpy as _np
# ensure features is numpy 2D array
X = dataset.features
if hasattr(X, 'toarray'):
X = X.toarray()
X = _np.asarray(X, dtype=float)
# basic preprocessing: fill NaN and scale (mean/std)
nan_mask = _np.isnan(X)
if nan_mask.any():
col_means = _np.nanmean(X, axis=0)
inds = _np.where(nan_mask)
X[inds] = _np.take(col_means, inds[1])
# standardize
col_means = X.mean(axis=0)
col_stds = X.std(axis=0)
col_stds[col_stds == 0] = 1.0
Xs = (X - col_means) / col_stds
# use sklearn KMeans
try:
from sklearn.cluster import KMeans
except Exception as e:
raise RuntimeError("sklearn is required for kmeans label generation: " + str(e))
n_clusters = 10 # produce 1..10 labels as required
kmeans = KMeans(n_clusters=n_clusters, random_state=seed, n_init=10)
cluster_ids = kmeans.fit_predict(Xs)
# compute a simple score per cluster to sort them (e.g., center mean)
centers = kmeans.cluster_centers_
center_scores = centers.mean(axis=1)
# sort cluster ids by score -> map to rank 1..n_clusters (1 = lowest score)
order = _np.argsort(center_scores)
rank_map = {int(c): (int(_np.where(order == c)[0][0]) + 1) for c in range(len(order))}
# assign labels 1..10 based on cluster rank
assigned_labels_1to10 = [_np.float64(rank_map[int(cid)]) for cid in cluster_ids]
# for training (classification) convert to 0..9 integer labels
assigned_labels_zero_based = _np.array([int(lbl) - 1 for lbl in assigned_labels_1to10], dtype=int)
# attach to dataset (CSVDataset consumers expect .labels possibly)
try:
import torch as _torch
dataset.labels = _torch.from_numpy(assigned_labels_zero_based).long()
except Exception:
# fallback to numpy attribute
dataset.labels = assigned_labels_zero_based
# persist label_info / assignments
label_info = {
"generated": True,
"label_method": "kmeans",
"n_clusters": n_clusters,
}
try:
# save assignments if small enough
if len(assigned_labels_1to10) <= 100000:
label_info["assignments"] = [float(x) for x in assigned_labels_1to10]
else:
arr_path = os.path.join(output_dir, "label_assignments.npz")
_np.savez_compressed(arr_path, assignments=_np.array(assigned_labels_1to10))
label_info["assignments_file"] = os.path.basename(arr_path)
with open(os.path.join(output_dir, "label_info.json"), "w") as f:
json.dump(label_info, f)
except Exception:
pass
# update model_num_classes for training (10 clusters)
model_num_classes = n_clusters
print(f"Generated kmeans labels with {n_clusters} clusters; saved label_info.json")
except Exception as e:
print("KMeans label generation failed:", e)
# fall back to prior logic (md5 or provided labels)
# ---- end kmeans generation ----
if model_type == 'cnn':
raise ValueError('CSV dataset should use model_type="mlp"')
# if we generated labels, infer the actual number of classes from the dataset labels
if generate_labels and hasattr(dataset, 'labels'):
try:
model_num_classes = int(dataset.labels.max().item()) + 1
except Exception:
model_num_classes = n_buckets
else:
model_num_classes = n_buckets if generate_labels else num_classes
# determine model_num_classes if not set by kmeans above
if model_num_classes is None:
# if we generated labels (non-kmeans) and dataset provides labels, infer number of classes
if generate_labels and hasattr(dataset, 'labels') and label_method != 'kmeans':
try:
model_num_classes = int(dataset.labels.max().item()) + 1
except Exception:
model_num_classes = n_buckets
else:
# default behavior
model_num_classes = n_buckets if generate_labels else num_classes
# If labels were generated, save label metadata + assignments (if not huge)
if generate_labels:
if generate_labels and label_method != 'kmeans':
try:
label_info = {
"generated": True,
@@ -86,7 +175,6 @@ def train(dataset_root, epochs=3, batch_size=16, lr=1e-3, device=None, num_class
except Exception:
pass
with open(os.path.join(output_dir, "label_info.json"), "w") as f:
import json
json.dump(label_info, f)
print(f"Saved label_info to {os.path.join(output_dir, 'label_info.json')}")
except Exception:
@@ -170,7 +258,6 @@ def train(dataset_root, epochs=3, batch_size=16, lr=1e-3, device=None, num_class
if __name__ == '__main__':
import argparse
import json
parser = argparse.ArgumentParser()
parser.add_argument('data_root')
parser.add_argument('--epochs', type=int, default=3)
@@ -210,3 +297,44 @@ if __name__ == '__main__':
json.dump(label_info, f)
train(data_root, epochs=args.epochs, batch_size=args.batch_size, lr=args.lr, model_type=args.model_type, csv_label=args.csv_label, generate_labels=args.generate_labels, n_buckets=args.n_buckets, label_method=args.label_method, label_store=args.label_store, feature_engineer=args.feature_engineer, lat_lon_bins=args.lat_lon_bins, nrows=nrows, seed=args.seed, hidden_dims=hidden_dims, weight_decay=args.weight_decay, output_dir=args.output_dir)
# ---------------- new helper ----------------
def compute_index(model, feature_vector):
"""
Run model on a single feature_vector and return the model-provided index as float.
- If model is a classifier (outputs logits), returns argmax + 1.0 (so labels 1..C).
- If model returns a single scalar regression, returns that scalar as float.
feature_vector may be numpy array or torch tensor (1D or 2D single sample).
"""
try:
import torch
model.eval()
if not isinstance(feature_vector, torch.Tensor):
fv = torch.tensor(feature_vector, dtype=torch.float32)
else:
fv = feature_vector.float()
# ensure batch dim
if fv.dim() == 1:
fv = fv.unsqueeze(0)
with torch.no_grad():
out = model(fv)
# if tensor output
if hasattr(out, 'detach'):
out_t = out.detach().cpu()
if out_t.ndim == 2 and out_t.shape[1] > 1:
# classifier logits/probs -> argmax
idx = int(out_t.argmax(dim=1).item())
return float(idx + 1)
elif out_t.numel() == 1:
return float(out_t.item())
else:
# fallback: return first element
return float(out_t.flatten()[0].item())
else:
# not a tensor (unlikely), try float conversion
return float(out)
except Exception as e:
raise RuntimeError("compute_index failed: " + str(e))
return float(out)
except Exception as e:
raise RuntimeError("compute_index failed: " + str(e))