BIG WEB UPDATE
This commit is contained in:
116
ai/test_queries.py
Normal file
116
ai/test_queries.py
Normal file
@@ -0,0 +1,116 @@
|
||||
import os
|
||||
from pymongo import MongoClient
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv('.env.local')
|
||||
|
||||
# MongoDB connection
|
||||
MONGO_URI = os.getenv('MONGO_URI')
|
||||
client = MongoClient(MONGO_URI)
|
||||
db = client['crashes']
|
||||
collection = db['crashes']
|
||||
|
||||
print("=== MongoDB Geospatial Query Examples ===\n")
|
||||
|
||||
# 1. Count total documents
|
||||
print("1. Total crash records in database:")
|
||||
total_count = collection.count_documents({})
|
||||
print(f" {total_count} crash records\n")
|
||||
|
||||
# 2. Find crashes within a radius (near the White House)
|
||||
print("2. Crashes within 500 meters of the White House:")
|
||||
white_house = [-77.0365, 38.8977]
|
||||
nearby_crashes = list(collection.find({
|
||||
"location": {
|
||||
"$nearSphere": {
|
||||
"$geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": white_house
|
||||
},
|
||||
"$maxDistance": 500 # 500 meters
|
||||
}
|
||||
}
|
||||
}).limit(5))
|
||||
|
||||
for crash in nearby_crashes:
|
||||
print(f" - {crash['crashId']}: {crash['address']} (Severity: {crash['severity']})")
|
||||
print()
|
||||
|
||||
# 3. Find crashes within a bounding box (downtown DC area)
|
||||
print("3. Crashes within downtown DC bounding box:")
|
||||
downtown_crashes = list(collection.find({
|
||||
"location": {
|
||||
"$geoWithin": {
|
||||
"$box": [
|
||||
[-77.05, 38.88], # Southwest corner
|
||||
[-77.01, 38.92] # Northeast corner
|
||||
]
|
||||
}
|
||||
}
|
||||
}).limit(5))
|
||||
|
||||
for crash in downtown_crashes:
|
||||
print(f" - {crash['crashId']}: {crash['address']} (Ward: {crash['ward']})")
|
||||
print()
|
||||
|
||||
# 4. Aggregation with geoNear for fatal crashes
|
||||
print("4. Fatal crashes near Capitol Hill (within 1km):")
|
||||
capitol_hill = [-77.0090, 38.8899]
|
||||
fatal_nearby = list(collection.aggregate([
|
||||
{
|
||||
"$geoNear": {
|
||||
"near": {
|
||||
"type": "Point",
|
||||
"coordinates": capitol_hill
|
||||
},
|
||||
"distanceField": "distance",
|
||||
"maxDistance": 1000,
|
||||
"query": {"severity": "Fatal"},
|
||||
"spherical": True
|
||||
}
|
||||
},
|
||||
{"$limit": 3}
|
||||
]))
|
||||
|
||||
for crash in fatal_nearby:
|
||||
distance_m = round(crash['distance'])
|
||||
print(f" - {crash['crashId']}: {crash['address']} ({distance_m}m away)")
|
||||
print()
|
||||
|
||||
# 5. Count crashes by severity within a specific area
|
||||
print("5. Crash severity breakdown in Ward 1:")
|
||||
severity_breakdown = list(collection.aggregate([
|
||||
{"$match": {"ward": "Ward 1"}},
|
||||
{"$group": {"_id": "$severity", "count": {"$sum": 1}}},
|
||||
{"$sort": {"count": -1}}
|
||||
]))
|
||||
|
||||
for item in severity_breakdown:
|
||||
print(f" - {item['_id']}: {item['count']} crashes")
|
||||
print()
|
||||
|
||||
# 6. Find crashes involving speeding within a polygon area
|
||||
print("6. Speeding-involved crashes near DuPont Circle:")
|
||||
dupont_circle = [-77.0436, 38.9094]
|
||||
speeding_crashes = list(collection.find({
|
||||
"location": {
|
||||
"$nearSphere": {
|
||||
"$geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": dupont_circle
|
||||
},
|
||||
"$maxDistance": 800
|
||||
}
|
||||
},
|
||||
"circumstances.speeding_involved": True
|
||||
}).limit(3))
|
||||
|
||||
for crash in speeding_crashes:
|
||||
print(f" - {crash['crashId']}: {crash['address']}")
|
||||
print(f" Vehicles: {crash['vehicles']['total']}, Severity: {crash['severity']}")
|
||||
print()
|
||||
|
||||
print("=== Geospatial queries completed successfully! ===")
|
||||
|
||||
client.close()
|
||||
Reference in New Issue
Block a user