Files
VTHacks13/roadcast/openmeteo_inference.py
samarthjain2023 42e4488d45 post request works
2025-09-28 00:47:45 -04:00

340 lines
14 KiB
Python

"""
Fetch OpenWeather data for a coordinate/time and run the trained MLP to predict the k-means cluster label.
Usage examples:
# with training CSV provided to compute preprocessing stats:
python openweather_inference.py --lat 38.9 --lon -77.0 --datetime "2025-09-27T12:00:00" --train-csv data.csv --model model.pth --centers kmeans_centers_all.npz --api-key $OPENWEATHER_KEY
# with precomputed preprocess meta (saved from training):
python openweather_inference.py --lat 38.9 --lon -77.0 --datetime "2025-09-27T12:00:00" --preprocess-meta preprocess_meta.npz --model model.pth --centers kmeans_centers_all.npz --api-key $OPENWEATHER_KEY
Notes:
- The script uses the same feature-engineering helpers in `data.py` so the model sees identical inputs.
- You must either provide `--train-csv` (to compute feature columns & means/stds) or `--preprocess-meta` previously saved.
- Provide the OpenWeather API key via --api-key or the OPENWEATHER_KEY environment variable.
"""
import os
import argparse
import json
from datetime import datetime
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
# reuse helpers from your repo
from data import _add_date_features, _add_latlon_bins, _add_hashed_street, CSVDataset
from inference import load_model
# module-level caches to avoid reloading heavy artifacts per request
_CACHED_MODEL = None
_CACHED_IDX_TO_CLASS = None
_CACHED_CENTERS = None
_CACHED_PREPROCESS_META = None
OW_BASE = 'https://api.openweathermap.org/data/2.5/onecall'
def fetch_openmeteo(lat, lon, api_key, dt_iso=None):
"""Fetch weather from OpenWeather One Call API for given lat/lon. If dt_iso provided, we fetch current+hourly and pick closest timestamp."""
try:
import requests
except Exception:
raise RuntimeError('requests library is required to fetch OpenWeather data')
params = {
'lat': float(lat),
'lon': float(lon),
'appid': api_key,
'units': 'metric',
'exclude': 'minutely,alerts'
}
r = requests.get(OW_BASE, params=params, timeout=10)
r.raise_for_status()
payload = r.json()
# if dt_iso provided, find nearest hourly data point
if dt_iso:
try:
target = pd.to_datetime(dt_iso)
except Exception:
target = None
best = None
if 'hourly' in payload and target is not None:
hours = payload['hourly']
best = min(hours, key=lambda h: abs(pd.to_datetime(h['dt'], unit='s') - target))
# convert keys to a flat dict with prefix 'ow_'
d = {
'ow_temp': best.get('temp'),
'ow_feels_like': best.get('feels_like'),
'ow_pressure': best.get('pressure'),
'ow_humidity': best.get('humidity'),
'ow_wind_speed': best.get('wind_speed'),
'ow_clouds': best.get('clouds'),
'ow_pop': best.get('pop'),
}
return d
# fallback: use current
cur = payload.get('current', {})
d = {
'ow_temp': cur.get('temp'),
'ow_feels_like': cur.get('feels_like'),
'ow_pressure': cur.get('pressure'),
'ow_humidity': cur.get('humidity'),
'ow_wind_speed': cur.get('wind_speed'),
'ow_clouds': cur.get('clouds'),
'ow_pop': None,
}
return d
def fetch_roadrisk(roadrisk_url, api_key=None):
"""Fetch the RoadRisk endpoint (expects JSON). If `api_key` is provided, we'll attach it as a query param if the URL has no key.
We flatten top-level numeric fields into `rr_*` keys for the feature row.
"""
# if api_key provided and url does not contain appid, append it
try:
import requests
except Exception:
raise RuntimeError('requests library is required to fetch RoadRisk data')
url = roadrisk_url
if api_key and 'appid=' not in roadrisk_url:
sep = '&' if '?' in roadrisk_url else '?'
url = f"{roadrisk_url}{sep}appid={api_key}"
r = requests.get(url, timeout=10)
r.raise_for_status()
payload = r.json()
# flatten numeric top-level fields
out = {}
if isinstance(payload, dict):
for k, v in payload.items():
if isinstance(v, (int, float)):
out[f'rr_{k}'] = v
# if nested objects contain simple numeric fields, pull them too (one level deep)
elif isinstance(v, dict):
for kk, vv in v.items():
if isinstance(vv, (int, float)):
out[f'rr_{k}_{kk}'] = vv
return out
def build_row(lat, lon, dt_iso=None, street=None, extra_weather=None):
"""Construct a single-row DataFrame with columns expected by the training pipeline.
It intentionally uses column names the original `data.py` looked for (REPORTDATE, LATITUDE, LONGITUDE, ADDRESS, etc.).
"""
row = {}
# date column matching common names
row['REPORTDATE'] = dt_iso if dt_iso else datetime.utcnow().isoformat()
row['LATITUDE'] = lat
row['LONGITUDE'] = lon
row['ADDRESS'] = street if street else ''
# include some injury/fatality placeholders that the label generator expects
row['INJURIES'] = 0
row['FATALITIES'] = 0
# include weather features returned by OpenWeather (prefixed 'ow_')
if extra_weather:
for k, v in extra_weather.items():
row[k] = v
return pd.DataFrame([row])
def prepare_features(df_row, train_csv=None, preprocess_meta=None, feature_engineer=True, lat_lon_bins=20):
"""Given a one-row DataFrame, apply same feature engineering and standardization as training.
If preprocess_meta is provided (npz), use it. Otherwise train_csv must be provided to compute stats.
Returns a torch.FloatTensor of shape (1, input_dim) and the feature_columns list.
"""
# apply feature engineering helpers
if feature_engineer:
try:
_add_date_features(df_row)
except Exception:
pass
try:
_add_latlon_bins(df_row, bins=lat_lon_bins)
except Exception:
pass
try:
_add_hashed_street(df_row)
except Exception:
pass
# if meta provided, load feature_columns, means, stds
if preprocess_meta and os.path.exists(preprocess_meta):
meta = np.load(preprocess_meta, allow_pickle=True)
feature_columns = meta['feature_columns'].tolist()
means = meta['means']
stds = meta['stds']
else:
if not train_csv:
raise ValueError('Either preprocess_meta or train_csv must be provided to derive feature stats')
# instantiate a CSVDataset on train_csv (feature_engineer True) to reuse its preprocessing
ds = CSVDataset(train_csv, feature_columns=None, label_column='label', generate_labels=True, n_buckets=10, label_method='kmeans', label_store=None, feature_engineer=feature_engineer, lat_lon_bins=lat_lon_bins, nrows=None)
feature_columns = ds.feature_columns
means = ds.feature_means
stds = ds.feature_stds
# save meta for reuse
np.savez_compressed('preprocess_meta.npz', feature_columns=np.array(feature_columns, dtype=object), means=means, stds=stds)
print('Saved preprocess_meta.npz')
# ensure all feature columns exist in df_row
for c in feature_columns:
if c not in df_row.columns:
df_row[c] = 0
# coerce and fill using means
features_df = df_row[feature_columns].apply(lambda c: pd.to_numeric(c, errors='coerce'))
features_df = features_df.fillna(pd.Series(means, index=feature_columns)).fillna(0.0)
# standardize
features_np = (features_df.values - means) / (stds + 1e-6)
import torch
return torch.tensor(features_np, dtype=torch.float32), feature_columns
def predict_from_openmeteo(lat, lon, dt_iso=None, street=None, api_key=None, train_csv=None, preprocess_meta=None, model_path='model.pth', centers_path='kmeans_centers_all.npz', roadrisk_url=None):
api_key = api_key or os.environ.get('OPENWEATHER_KEY')
if api_key is None:
raise ValueError('OpenWeather API key required via --api-key or OPENWEATHER_KEY env var')
# gather weather/road-risk features
weather = {}
if roadrisk_url:
try:
rr = fetch_roadrisk(roadrisk_url, api_key=api_key)
weather.update(rr)
except Exception as e:
print('Warning: failed to fetch roadrisk URL:', e)
else:
try:
ow = fetch_openmeteo(lat, lon, api_key, dt_iso=dt_iso)
weather.update(ow)
except Exception as e:
print('Warning: failed to fetch openweather:', e)
df_row = build_row(lat, lon, dt_iso=dt_iso, street=street, extra_weather=weather)
x_tensor, feature_columns = prepare_features(df_row, train_csv=train_csv, preprocess_meta=preprocess_meta)
# load model (infer num_classes from centers file if possible)
global _CACHED_MODEL, _CACHED_IDX_TO_CLASS, _CACHED_CENTERS, _CACHED_PREPROCESS_META
# ensure we have preprocess_meta available (prefer supplied path, otherwise fallback to saved file)
if preprocess_meta is None:
candidate = os.path.join(os.getcwd(), 'preprocess_meta.npz')
if os.path.exists(candidate):
preprocess_meta = candidate
# load centers (cache across requests)
if _CACHED_CENTERS is None:
if centers_path and os.path.exists(centers_path):
try:
npz = np.load(centers_path)
_CACHED_CENTERS = npz['centers']
except Exception:
_CACHED_CENTERS = None
else:
_CACHED_CENTERS = None
num_classes = _CACHED_CENTERS.shape[0] if _CACHED_CENTERS is not None else 10
# load model once and cache it
if _CACHED_MODEL is None:
try:
_CACHED_MODEL, _CACHED_IDX_TO_CLASS = load_model(model_path, device=None, in_channels=3, num_classes=num_classes)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
_CACHED_MODEL.to(device)
except Exception as e:
raise
model = _CACHED_MODEL
idx_to_class = _CACHED_IDX_TO_CLASS
device = 'cuda' if torch.cuda.is_available() else 'cpu'
x_tensor = x_tensor.to(device)
with torch.no_grad():
logits = model(x_tensor)
probs = F.softmax(logits, dim=1).cpu().numpy()[0]
pred_idx = int(probs.argmax())
confidence = float(probs.max())
# optionally provide cluster centroid info
centroid = _CACHED_CENTERS[pred_idx] if _CACHED_CENTERS is not None else None
return {
'pred_cluster': int(pred_idx),
'confidence': confidence,
'probabilities': probs.tolist(),
'centroid': centroid.tolist() if centroid is not None else None,
'feature_columns': feature_columns,
'used_preprocess_meta': preprocess_meta
}
def init_inference(model_path='model.pth', centers_path='kmeans_centers_all.npz', preprocess_meta=None):
"""Eagerly load model, centers, and preprocess_meta into module-level caches.
This is intended to be called at app startup to surface load errors early and avoid
per-request disk IO. The function is best-effort and will print warnings if artifacts
are missing.
"""
global _CACHED_MODEL, _CACHED_IDX_TO_CLASS, _CACHED_CENTERS, _CACHED_PREPROCESS_META
# prefer existing saved preprocess_meta if not explicitly provided
if preprocess_meta is None:
candidate = os.path.join(os.getcwd(), 'preprocess_meta.npz')
if os.path.exists(candidate):
preprocess_meta = candidate
_CACHED_PREPROCESS_META = preprocess_meta
# load centers
if _CACHED_CENTERS is None:
if centers_path and os.path.exists(centers_path):
try:
npz = np.load(centers_path)
_CACHED_CENTERS = npz['centers']
print(f'Loaded centers from {centers_path}')
except Exception as e:
print('Warning: failed to load centers:', e)
_CACHED_CENTERS = None
else:
print('No centers file found at', centers_path)
_CACHED_CENTERS = None
num_classes = _CACHED_CENTERS.shape[0] if _CACHED_CENTERS is not None else 10
# load model
if _CACHED_MODEL is None:
try:
_CACHED_MODEL, _CACHED_IDX_TO_CLASS = load_model(model_path, device=None, in_channels=3, num_classes=num_classes)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
_CACHED_MODEL.to(device)
print(f'Loaded model from {model_path}')
except Exception as e:
print('Warning: failed to load model:', e)
_CACHED_MODEL = None
return {
'model_loaded': _CACHED_MODEL is not None,
'centers_loaded': _CACHED_CENTERS is not None,
'preprocess_meta': _CACHED_PREPROCESS_META
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--lat', type=float, required=True)
parser.add_argument('--lon', type=float, required=True)
parser.add_argument('--datetime', default=None, help='ISO datetime string to query hourly weather (optional)')
parser.add_argument('--street', default='')
parser.add_argument('--api-key', default=None, help='OpenWeather API key or use OPENWEATHER_KEY env var')
parser.add_argument('--train-csv', default=None, help='Path to training CSV to compute preprocessing stats (optional if --preprocess-meta provided)')
parser.add_argument('--preprocess-meta', default=None, help='Path to precomputed preprocess_meta.npz (optional)')
parser.add_argument('--model', default='model.pth')
parser.add_argument('--centers', default='kmeans_centers_all.npz')
parser.add_argument('--roadrisk-url', default=None, help='Optional custom RoadRisk API URL (if provided, will be queried instead of OneCall)')
args = parser.parse_args()
out = predict_from_openmeteo(args.lat, args.lon, dt_iso=args.datetime, street=args.street, api_key=args.api_key, train_csv=args.train_csv, preprocess_meta=args.preprocess_meta, model_path=args.model, centers_path=args.centers, roadrisk_url=args.roadrisk_url)
print(json.dumps(out, indent=2))