Files
VTHacks13/roadcast/README.md
samarthjain2023 0df2b0019b added the model
2025-09-27 12:14:26 -04:00

75 lines
1.7 KiB
Markdown

# RoAdCast - Flask + PyTorch CNN starter
This project contains a minimal Flask app and a small PyTorch CNN scaffold so you can train and run a model directly from VS Code.
Quick setup (Windows PowerShell):
1. Create and activate a virtual environment
```powershell
python -m venv .venv
.\.venv\Scripts\Activate.ps1
```
2. Install dependencies
```powershell
pip install -r requirements.txt
```
3. Dataset layout
Image dataset (folder-per-class):
data/
class1/
img1.jpg
class2/
img2.jpg
CSV dataset (single file):
data.csv (expects a `label` column and numeric feature columns)
Train commands:
Image training (default cnn):
```powershell
python train.py data --epochs 5 --batch-size 16
```
CSV/tabular training (MLP):
```powershell
python train.py data.csv --model-type mlp --epochs 20 --batch-size 64
```
The model will be saved as `model.pth` in the repo root (best validation checkpoint).
Run the Flask app (for local testing):
```powershell
python app.py
```
Predict using curl (or Postman). Example with curl in PowerShell:
```powershell
curl -X POST -F "image=@path\to\image.jpg" http://127.0.0.1:5000/predict
```
VS Code tips
- Open this folder in VS Code.
- Use the Python extension and select the `.venv` interpreter.
- Use the Run panel to add a launch configuration that runs `app.py` or `train.py`.
- For long training runs, run training in the terminal (not the debugger) and monitor logs.
Notes & next steps
- The SimpleCNN uses 224x224 input and expects at least two maxpool steps; adjust `models.py` if you want smaller inputs.
- Add better transforms and augmentation in `data.py` for better performance.
- If GPU is available, PyTorch will use it automatically if installed with CUDA.