238 lines
9.3 KiB
Python
238 lines
9.3 KiB
Python
import os
|
|
import time
|
|
import json
|
|
from flask import Flask, request, send_file, jsonify, send_from_directory, Response
|
|
from flask_cors import CORS
|
|
from werkzeug.utils import secure_filename
|
|
from processor import AudioImageProcessor
|
|
|
|
app = Flask(__name__, static_folder='../build', static_url_path='')
|
|
CORS(app)
|
|
|
|
UPLOAD_FOLDER = os.path.join(os.getcwd(), 'uploads')
|
|
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
processor = AudioImageProcessor(UPLOAD_FOLDER)
|
|
|
|
def save_upload(file_obj):
|
|
filename = secure_filename(file_obj.filename)
|
|
path = os.path.join(app.config['UPLOAD_FOLDER'], f"{int(time.time())}_{filename}")
|
|
file_obj.save(path)
|
|
return path
|
|
|
|
@app.route('/')
|
|
def index():
|
|
return send_from_directory(app.static_folder, 'index.html')
|
|
|
|
@app.errorhandler(404)
|
|
def not_found(e):
|
|
if request.path.startswith('/api/'):
|
|
return jsonify({"error": "Not found"}), 404
|
|
return send_from_directory(app.static_folder, 'index.html')
|
|
|
|
@app.route('/health', methods=['GET'])
|
|
def health():
|
|
return jsonify({"status": "ok", "max_mb": 40})
|
|
|
|
import threading
|
|
|
|
def cleanup_task():
|
|
expiration_seconds = 600
|
|
while True:
|
|
try:
|
|
now = time.time()
|
|
if os.path.exists(UPLOAD_FOLDER):
|
|
for filename in os.listdir(UPLOAD_FOLDER):
|
|
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
|
if os.path.isfile(filepath):
|
|
if now - os.path.getctime(filepath) > expiration_seconds:
|
|
try:
|
|
os.remove(filepath)
|
|
print(f"Cleaned up: {filename}")
|
|
except Exception as e:
|
|
print(f"Error cleaning {filename}: {e}")
|
|
except Exception as e:
|
|
print(f"Cleanup Error: {e}")
|
|
|
|
time.sleep(60)
|
|
|
|
if os.environ.get('WERKZEUG_RUN_MAIN') == 'true' or not os.environ.get('WERKZEUG_RUN_MAIN'):
|
|
t = threading.Thread(target=cleanup_task, daemon=True)
|
|
t.start()
|
|
|
|
@app.route('/api/generate-art', methods=['POST'])
|
|
def generate_art():
|
|
if 'audio' not in request.files:
|
|
return jsonify({"error": "No audio file provided"}), 400
|
|
|
|
audio_file = request.files['audio']
|
|
should_embed = request.form.get('embed', 'false').lower() == 'true'
|
|
|
|
audio_path = None
|
|
art_path = None
|
|
|
|
try:
|
|
audio_path = save_upload(audio_file)
|
|
|
|
min_pixels = 0
|
|
if should_embed:
|
|
file_size = os.path.getsize(audio_path)
|
|
min_pixels = int((file_size * 8 / 3) * 1.05)
|
|
|
|
art_path = processor.generate_spectrogram(audio_path, min_pixels=min_pixels)
|
|
|
|
final_path = art_path
|
|
if should_embed:
|
|
final_path = processor.encode_stego(audio_path, art_path)
|
|
|
|
if art_path != final_path:
|
|
try: os.remove(art_path)
|
|
except: pass
|
|
|
|
return send_file(final_path, mimetype='image/png')
|
|
|
|
except ValueError as e:
|
|
return jsonify({"error": str(e)}), 400
|
|
except Exception as e:
|
|
return jsonify({"error": str(e)}), 500
|
|
finally:
|
|
if audio_path and os.path.exists(audio_path):
|
|
try: os.remove(audio_path)
|
|
except: pass
|
|
|
|
@app.route('/api/hide', methods=['POST'])
|
|
def hide_data():
|
|
if 'data' not in request.files or 'host' not in request.files:
|
|
return jsonify({"error": "Requires 'data' and 'host' files"}), 400
|
|
|
|
data_path = None
|
|
host_path = None
|
|
try:
|
|
data_path = save_upload(request.files['data'])
|
|
host_path = save_upload(request.files['host'])
|
|
|
|
stego_path = processor.encode_stego(data_path, host_path)
|
|
return send_file(stego_path, mimetype='image/png')
|
|
except ValueError as e:
|
|
return jsonify({"error": str(e)}), 400
|
|
except Exception as e:
|
|
return jsonify({"error": str(e)}), 500
|
|
finally:
|
|
if data_path and os.path.exists(data_path):
|
|
try: os.remove(data_path)
|
|
except: pass
|
|
if host_path and os.path.exists(host_path):
|
|
try: os.remove(host_path)
|
|
except: pass
|
|
|
|
@app.route('/api/decode', methods=['POST'])
|
|
def decode():
|
|
if 'image' not in request.files:
|
|
return jsonify({"error": "No image provided"}), 400
|
|
|
|
img_path = None
|
|
try:
|
|
img_path = save_upload(request.files['image'])
|
|
restored_path = processor.decode_image(img_path)
|
|
|
|
filename = os.path.basename(restored_path)
|
|
return send_file(restored_path, as_attachment=True, download_name=filename)
|
|
except ValueError as e:
|
|
return jsonify({"error": str(e)}), 400
|
|
except Exception as e:
|
|
return jsonify({"error": str(e)}), 500
|
|
finally:
|
|
if img_path and os.path.exists(img_path):
|
|
try: os.remove(img_path)
|
|
except: pass
|
|
|
|
@app.route('/api/visualize', methods=['POST'])
|
|
def visualize():
|
|
if 'audio' not in request.files:
|
|
return jsonify({"error": "No audio file provided"}), 400
|
|
|
|
audio_file = request.files['audio']
|
|
audio_path = None
|
|
|
|
try:
|
|
audio_path = save_upload(audio_file)
|
|
file_size = os.path.getsize(audio_path)
|
|
min_pixels = int((file_size * 8 / 3) * 1.05)
|
|
|
|
def generate_steps():
|
|
art_path = None
|
|
final_path = None
|
|
|
|
try:
|
|
import base64
|
|
|
|
yield f"data: {json.dumps({'step': 1, 'status': 'loading', 'message': 'Loading audio file...', 'progress': 10})}\n\n"
|
|
time.sleep(0.8)
|
|
|
|
yield f"data: {json.dumps({'step': 1, 'status': 'complete', 'message': f'Audio loaded: {audio_file.filename}', 'progress': 20, 'fileSize': file_size})}\n\n"
|
|
time.sleep(0.5)
|
|
|
|
yield f"data: {json.dumps({'step': 2, 'status': 'loading', 'message': 'Analyzing audio frequencies...', 'progress': 30})}\n\n"
|
|
time.sleep(1.0)
|
|
|
|
yield f"data: {json.dumps({'step': 2, 'status': 'complete', 'message': 'Frequency analysis complete', 'progress': 40})}\n\n"
|
|
time.sleep(0.5)
|
|
|
|
yield f"data: {json.dumps({'step': 3, 'status': 'loading', 'message': 'Generating spectrogram image...', 'progress': 50})}\n\n"
|
|
|
|
print(f"[VISUALIZE] Starting spectrogram generation for {audio_path}")
|
|
art_path = processor.generate_spectrogram(audio_path, min_pixels=min_pixels)
|
|
print(f"[VISUALIZE] Spectrogram generated at {art_path}")
|
|
|
|
with open(art_path, 'rb') as img_file:
|
|
spectrogram_b64 = base64.b64encode(img_file.read()).decode('utf-8')
|
|
print(f"[VISUALIZE] Spectrogram base64 length: {len(spectrogram_b64)}")
|
|
|
|
yield f"data: {json.dumps({'step': 3, 'status': 'complete', 'message': 'Spectrogram generated!', 'progress': 70, 'spectrogramImage': f'data:image/png;base64,{spectrogram_b64}'})}\n\n"
|
|
print("[VISUALIZE] Sent spectrogram image")
|
|
time.sleep(2.0)
|
|
|
|
yield f"data: {json.dumps({'step': 4, 'status': 'loading', 'message': 'Embedding audio into image (LSB steganography)...', 'progress': 80})}\n\n"
|
|
|
|
final_path = processor.encode_stego(audio_path, art_path)
|
|
|
|
with open(final_path, 'rb') as img_file:
|
|
final_b64 = base64.b64encode(img_file.read()).decode('utf-8')
|
|
|
|
yield f"data: {json.dumps({'step': 4, 'status': 'complete', 'message': 'Audio embedded successfully!', 'progress': 95, 'finalImage': f'data:image/png;base64,{final_b64}'})}\n\n"
|
|
time.sleep(2.0)
|
|
|
|
result_id = os.path.basename(final_path)
|
|
yield f"data: {json.dumps({'step': 5, 'status': 'complete', 'message': 'Process complete!', 'progress': 100, 'resultId': result_id})}\n\n"
|
|
|
|
except Exception as e:
|
|
yield f"data: {json.dumps({'step': 0, 'status': 'error', 'message': str(e), 'progress': 0})}\n\n"
|
|
finally:
|
|
if art_path and art_path != final_path and os.path.exists(art_path):
|
|
try: os.remove(art_path)
|
|
except: pass
|
|
if audio_path and os.path.exists(audio_path):
|
|
try: os.remove(audio_path)
|
|
except: pass
|
|
|
|
response = Response(generate_steps(), mimetype='text/event-stream')
|
|
response.headers['Cache-Control'] = 'no-cache'
|
|
response.headers['X-Accel-Buffering'] = 'no'
|
|
response.headers['Connection'] = 'keep-alive'
|
|
return response
|
|
|
|
except Exception as e:
|
|
if audio_path and os.path.exists(audio_path):
|
|
try: os.remove(audio_path)
|
|
except: pass
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
@app.route('/api/result/<result_id>', methods=['GET'])
|
|
def get_result(result_id):
|
|
result_path = os.path.join(app.config['UPLOAD_FOLDER'], result_id)
|
|
if os.path.exists(result_path):
|
|
return send_file(result_path, mimetype='image/png', as_attachment=False)
|
|
return jsonify({"error": "Result not found"}), 404
|
|
|
|
if __name__ == '__main__':
|
|
app.run(host='0.0.0.0', debug=True, port=5000, threaded=True)
|