Files
RDC_Simulation/README.md
2026-01-01 00:59:44 +00:00

80 lines
2.5 KiB
Markdown

# Drone Landing Simulation (GPS-Denied)
A GPS-denied drone landing simulation using relative sensors (IMU, altimeter, camera, landing pad detection) with **PyBullet** and **Gazebo** simulators.
## Quick Start
```bash
# Install (choose your platform)
./setup/install_ubuntu.sh # Ubuntu/Debian
./setup/install_arch.sh # Arch Linux
./setup/install_macos.sh # macOS
.\setup\install_windows.ps1 # Windows (PowerShell)
# Activate and run
source activate.sh # Linux/macOS
. .\activate.ps1 # Windows
python standalone_simulation.py --pattern circular --speed 0.3
```
## Platform Compatibility
| Feature | Ubuntu | Arch | macOS | Windows |
|---------|--------|------|-------|---------|
| Standalone | ✅ | ✅ | ✅ | ✅ |
| ROS 2 | ✅ | ⚠️ | ❌ | ❌ |
| Gazebo | ✅ | ⚠️ | ❌ | ❌ |
**All platforms support standalone mode** - no ROS 2 required!
## Files
| File | Description |
|------|-------------|
| `standalone_simulation.py` | **All-in-one simulation (no ROS 2)** |
| `simulation_host.py` | PyBullet simulator (ROS 2 mode) |
| `ros_bridge.py` | UDP ↔ ROS 2 bridge |
| `gazebo_bridge.py` | Gazebo ↔ ROS 2 bridge |
| `controllers.py` | Runs drone + rover controllers |
| `drone_controller.py` | Drone landing logic (edit this) |
| `rover_controller.py` | Moving landing pad |
## Controller Options
```bash
python standalone_simulation.py --help
Options:
--pattern, -p stationary, linear, circular, square
--speed, -s Speed in m/s (default: 0.5)
--amplitude, -a Amplitude in meters (default: 2.0)
```
## GPS-Denied Sensors
| Sensor | Data |
|--------|------|
| **IMU** | Orientation, angular velocity |
| **Altimeter** | Altitude, vertical velocity |
| **Velocity** | Estimated horizontal velocity |
| **Camera** | 320x240 downward-facing image |
| **Landing Pad** | Relative position when visible |
## Documentation
| Document | Description |
|----------|-------------|
| [Installation](docs/installation.md) | All platform setup guides |
| [Architecture](docs/architecture.md) | System components |
| [Protocol](docs/protocol.md) | Sensor data formats |
| [Drone Guide](docs/drone_guide.md) | Landing algorithm guide |
| [PyBullet](docs/pybullet.md) | PyBullet setup |
| [Gazebo](docs/gazebo.md) | Gazebo setup (Linux) |
## Getting Started
1. Run `python standalone_simulation.py`
2. Watch the drone land automatically
3. Edit `drone_controller.py` to implement your own algorithm
4. Test: `python standalone_simulation.py --pattern circular`