355 lines
12 KiB
Python
355 lines
12 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Standalone Drone Simulation - Runs without ROS 2.
|
|
Includes built-in controller for landing demonstration.
|
|
|
|
Usage: python standalone_simulation.py [--pattern PATTERN] [--speed SPEED]
|
|
"""
|
|
|
|
import argparse
|
|
import base64
|
|
import json
|
|
import math
|
|
import time
|
|
from typing import Dict, Any, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import pybullet as p
|
|
import pybullet_data
|
|
|
|
|
|
class StandaloneSimulation:
|
|
"""Complete simulation with built-in controller - no ROS 2 needed."""
|
|
|
|
PHYSICS_TIMESTEP = 1.0 / 240.0
|
|
GRAVITY = -9.81
|
|
CONTROL_INTERVAL = 5 # Apply control every N physics steps
|
|
|
|
DRONE_MASS = 1.0
|
|
DRONE_SIZE = (0.3, 0.3, 0.1)
|
|
DRONE_START_POS = (0.0, 0.0, 5.0)
|
|
|
|
THRUST_SCALE = 15.0
|
|
PITCH_TORQUE_SCALE = 2.0
|
|
ROLL_TORQUE_SCALE = 2.0
|
|
YAW_TORQUE_SCALE = 1.0
|
|
HOVER_THRUST = DRONE_MASS * abs(GRAVITY)
|
|
|
|
ROVER_SIZE = (1.0, 1.0, 0.3)
|
|
ROVER_START_POS = [0.0, 0.0, 0.15]
|
|
|
|
CAMERA_FOV = 60.0
|
|
|
|
def __init__(self, rover_pattern='stationary', rover_speed=0.5, rover_amplitude=2.0):
|
|
print("=" * 60)
|
|
print("Standalone Drone Simulation (No ROS 2 Required)")
|
|
print("=" * 60)
|
|
|
|
self._running = True
|
|
self._step_count = 0
|
|
self._time = 0.0
|
|
|
|
# Rover movement settings
|
|
self._rover_pattern = rover_pattern
|
|
self._rover_speed = rover_speed
|
|
self._rover_amplitude = rover_amplitude
|
|
self._rover_pos = list(self.ROVER_START_POS)
|
|
|
|
# Control command
|
|
self._command = {'thrust': 0.0, 'pitch': 0.0, 'roll': 0.0, 'yaw': 0.0}
|
|
|
|
self._init_physics()
|
|
self._init_objects()
|
|
|
|
print(f" Rover Pattern: {rover_pattern}")
|
|
print(f" Rover Speed: {rover_speed} m/s")
|
|
print(" Press Ctrl+C to exit")
|
|
print("=" * 60)
|
|
|
|
def _init_physics(self) -> None:
|
|
self._physics_client = p.connect(p.GUI)
|
|
p.setGravity(0, 0, self.GRAVITY)
|
|
p.setTimeStep(self.PHYSICS_TIMESTEP)
|
|
p.resetDebugVisualizerCamera(
|
|
cameraDistance=8.0,
|
|
cameraYaw=45,
|
|
cameraPitch=-30,
|
|
cameraTargetPosition=[0, 0, 1]
|
|
)
|
|
p.setAdditionalSearchPath(pybullet_data.getDataPath())
|
|
|
|
def _init_objects(self) -> None:
|
|
self._ground_id = p.loadURDF("plane.urdf")
|
|
|
|
# Create rover (landing pad)
|
|
rover_collision = p.createCollisionShape(
|
|
p.GEOM_BOX,
|
|
halfExtents=[s/2 for s in self.ROVER_SIZE]
|
|
)
|
|
rover_visual = p.createVisualShape(
|
|
p.GEOM_BOX,
|
|
halfExtents=[s/2 for s in self.ROVER_SIZE],
|
|
rgbaColor=[0.2, 0.6, 0.2, 1.0]
|
|
)
|
|
self._rover_id = p.createMultiBody(
|
|
baseMass=0,
|
|
baseCollisionShapeIndex=rover_collision,
|
|
baseVisualShapeIndex=rover_visual,
|
|
basePosition=self.ROVER_START_POS
|
|
)
|
|
|
|
# Create landing pad marker
|
|
self._create_landing_marker()
|
|
|
|
# Create drone
|
|
drone_collision = p.createCollisionShape(
|
|
p.GEOM_BOX,
|
|
halfExtents=[s/2 for s in self.DRONE_SIZE]
|
|
)
|
|
drone_visual = p.createVisualShape(
|
|
p.GEOM_BOX,
|
|
halfExtents=[s/2 for s in self.DRONE_SIZE],
|
|
rgbaColor=[0.8, 0.2, 0.2, 1.0]
|
|
)
|
|
self._drone_id = p.createMultiBody(
|
|
baseMass=self.DRONE_MASS,
|
|
baseCollisionShapeIndex=drone_collision,
|
|
baseVisualShapeIndex=drone_visual,
|
|
basePosition=self.DRONE_START_POS
|
|
)
|
|
p.changeDynamics(
|
|
self._drone_id, -1,
|
|
linearDamping=0.1,
|
|
angularDamping=0.5
|
|
)
|
|
|
|
def _create_landing_marker(self) -> None:
|
|
marker_height = self.ROVER_START_POS[2] + self.ROVER_SIZE[2] / 2 + 0.01
|
|
h_size = 0.3
|
|
line_color = [1, 1, 1]
|
|
|
|
p.addUserDebugLine([-h_size, 0, marker_height], [h_size, 0, marker_height],
|
|
lineColorRGB=line_color, lineWidth=3)
|
|
p.addUserDebugLine([-h_size, -h_size, marker_height], [-h_size, h_size, marker_height],
|
|
lineColorRGB=line_color, lineWidth=3)
|
|
p.addUserDebugLine([h_size, -h_size, marker_height], [h_size, h_size, marker_height],
|
|
lineColorRGB=line_color, lineWidth=3)
|
|
|
|
def run(self) -> None:
|
|
print("\nSimulation running...")
|
|
|
|
try:
|
|
while self._running:
|
|
loop_start = time.time()
|
|
|
|
if not p.isConnected():
|
|
break
|
|
|
|
# Update rover position
|
|
self._update_rover()
|
|
|
|
# Run controller
|
|
if self._step_count % self.CONTROL_INTERVAL == 0:
|
|
self._run_controller()
|
|
|
|
# Apply physics
|
|
self._apply_controls()
|
|
p.stepSimulation()
|
|
self._step_count += 1
|
|
self._time += self.PHYSICS_TIMESTEP
|
|
|
|
# Check landing
|
|
if self._check_landing():
|
|
print("\n*** LANDING SUCCESSFUL! ***\n")
|
|
time.sleep(2)
|
|
break
|
|
|
|
# Timing
|
|
elapsed = time.time() - loop_start
|
|
sleep_time = self.PHYSICS_TIMESTEP - elapsed
|
|
if sleep_time > 0:
|
|
time.sleep(sleep_time)
|
|
|
|
except KeyboardInterrupt:
|
|
print("\nStopping simulation...")
|
|
finally:
|
|
if p.isConnected():
|
|
p.disconnect()
|
|
|
|
def _update_rover(self) -> None:
|
|
"""Move the rover based on pattern."""
|
|
dt = self.PHYSICS_TIMESTEP
|
|
|
|
if self._rover_pattern == 'stationary':
|
|
return
|
|
|
|
elif self._rover_pattern == 'linear':
|
|
omega = self._rover_speed / self._rover_amplitude
|
|
target_x = self._rover_amplitude * math.sin(omega * self._time)
|
|
self._rover_pos[0] += 2.0 * (target_x - self._rover_pos[0]) * dt
|
|
|
|
elif self._rover_pattern == 'circular':
|
|
omega = self._rover_speed / self._rover_amplitude
|
|
target_x = self._rover_amplitude * math.cos(omega * self._time)
|
|
target_y = self._rover_amplitude * math.sin(omega * self._time)
|
|
self._rover_pos[0] += 2.0 * (target_x - self._rover_pos[0]) * dt
|
|
self._rover_pos[1] += 2.0 * (target_y - self._rover_pos[1]) * dt
|
|
|
|
elif self._rover_pattern == 'square':
|
|
segment = int(self._time / 3) % 4
|
|
corners = [(1, 1), (-1, 1), (-1, -1), (1, -1)]
|
|
target = corners[segment]
|
|
target_x = target[0] * self._rover_amplitude
|
|
target_y = target[1] * self._rover_amplitude
|
|
dx = target_x - self._rover_pos[0]
|
|
dy = target_y - self._rover_pos[1]
|
|
dist = math.sqrt(dx**2 + dy**2)
|
|
if dist > 0.01:
|
|
self._rover_pos[0] += self._rover_speed * dx / dist * dt
|
|
self._rover_pos[1] += self._rover_speed * dy / dist * dt
|
|
|
|
# Update rover position in simulation
|
|
p.resetBasePositionAndOrientation(
|
|
self._rover_id,
|
|
[self._rover_pos[0], self._rover_pos[1], self._rover_pos[2]],
|
|
[0, 0, 0, 1]
|
|
)
|
|
|
|
def _get_telemetry(self) -> Dict[str, Any]:
|
|
"""Get current drone state."""
|
|
pos, orn = p.getBasePositionAndOrientation(self._drone_id)
|
|
vel, ang_vel = p.getBaseVelocity(self._drone_id)
|
|
euler = p.getEulerFromQuaternion(orn)
|
|
|
|
# Landing pad detection
|
|
dx = self._rover_pos[0] - pos[0]
|
|
dy = self._rover_pos[1] - pos[1]
|
|
dz = self._rover_pos[2] - pos[2]
|
|
horizontal_dist = math.sqrt(dx**2 + dy**2)
|
|
vertical_dist = -dz
|
|
|
|
landing_pad = None
|
|
if vertical_dist > 0 and vertical_dist < 10.0:
|
|
fov_rad = math.radians(self.CAMERA_FOV / 2)
|
|
max_horizontal = vertical_dist * math.tan(fov_rad)
|
|
if horizontal_dist < max_horizontal:
|
|
landing_pad = {
|
|
"relative_x": dx,
|
|
"relative_y": dy,
|
|
"distance": vertical_dist,
|
|
"confidence": 1.0 - (horizontal_dist / max_horizontal)
|
|
}
|
|
|
|
return {
|
|
"altimeter": {"altitude": pos[2], "vertical_velocity": vel[2]},
|
|
"velocity": {"x": vel[0], "y": vel[1], "z": vel[2]},
|
|
"imu": {
|
|
"orientation": {"roll": euler[0], "pitch": euler[1], "yaw": euler[2]},
|
|
"angular_velocity": {"x": ang_vel[0], "y": ang_vel[1], "z": ang_vel[2]}
|
|
},
|
|
"landing_pad": landing_pad,
|
|
"rover_position": {"x": self._rover_pos[0], "y": self._rover_pos[1]}
|
|
}
|
|
|
|
def _run_controller(self) -> None:
|
|
"""Simple landing controller."""
|
|
telemetry = self._get_telemetry()
|
|
|
|
altimeter = telemetry['altimeter']
|
|
altitude = altimeter['altitude']
|
|
vertical_vel = altimeter['vertical_velocity']
|
|
|
|
velocity = telemetry['velocity']
|
|
vel_x = velocity['x']
|
|
vel_y = velocity['y']
|
|
|
|
landing_pad = telemetry['landing_pad']
|
|
|
|
# Altitude control
|
|
target_alt = 0.0
|
|
Kp_z, Kd_z = 0.5, 0.3
|
|
thrust = Kp_z * (target_alt - altitude) - Kd_z * vertical_vel
|
|
|
|
# Horizontal control
|
|
Kp_xy, Kd_xy = 0.3, 0.2
|
|
|
|
if landing_pad is not None:
|
|
target_x = landing_pad['relative_x']
|
|
target_y = landing_pad['relative_y']
|
|
pitch = Kp_xy * target_x - Kd_xy * vel_x
|
|
roll = Kp_xy * target_y - Kd_xy * vel_y
|
|
else:
|
|
pitch = -Kd_xy * vel_x
|
|
roll = -Kd_xy * vel_y
|
|
|
|
# Clamp
|
|
thrust = max(-1.0, min(1.0, thrust))
|
|
pitch = max(-0.5, min(0.5, pitch))
|
|
roll = max(-0.5, min(0.5, roll))
|
|
|
|
self._command = {'thrust': thrust, 'pitch': pitch, 'roll': roll, 'yaw': 0.0}
|
|
|
|
def _apply_controls(self) -> None:
|
|
"""Apply control commands to drone."""
|
|
pos, orn = p.getBasePositionAndOrientation(self._drone_id)
|
|
rot_matrix = p.getMatrixFromQuaternion(orn)
|
|
local_up = [rot_matrix[2], rot_matrix[5], rot_matrix[8]]
|
|
|
|
total_thrust = self.HOVER_THRUST + (self._command['thrust'] * self.THRUST_SCALE)
|
|
total_thrust = max(0, total_thrust)
|
|
|
|
thrust_force = [
|
|
local_up[0] * total_thrust,
|
|
local_up[1] * total_thrust,
|
|
local_up[2] * total_thrust
|
|
]
|
|
|
|
p.applyExternalForce(
|
|
self._drone_id, -1,
|
|
forceObj=thrust_force,
|
|
posObj=pos,
|
|
flags=p.WORLD_FRAME
|
|
)
|
|
|
|
p.applyExternalTorque(
|
|
self._drone_id, -1,
|
|
torqueObj=[
|
|
self._command['pitch'] * self.PITCH_TORQUE_SCALE,
|
|
self._command['roll'] * self.ROLL_TORQUE_SCALE,
|
|
self._command['yaw'] * self.YAW_TORQUE_SCALE
|
|
],
|
|
flags=p.LINK_FRAME
|
|
)
|
|
|
|
def _check_landing(self) -> bool:
|
|
"""Check if drone landed on rover."""
|
|
contacts = p.getContactPoints(bodyA=self._drone_id, bodyB=self._rover_id)
|
|
if len(contacts) > 0:
|
|
vel, _ = p.getBaseVelocity(self._drone_id)
|
|
speed = math.sqrt(vel[0]**2 + vel[1]**2 + vel[2]**2)
|
|
return speed < 0.5
|
|
return False
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Standalone Drone Simulation')
|
|
parser.add_argument('--pattern', '-p', type=str, default='stationary',
|
|
choices=['stationary', 'linear', 'circular', 'square'],
|
|
help='Rover movement pattern')
|
|
parser.add_argument('--speed', '-s', type=float, default=0.5,
|
|
help='Rover speed in m/s')
|
|
parser.add_argument('--amplitude', '-a', type=float, default=2.0,
|
|
help='Rover movement amplitude in meters')
|
|
args = parser.parse_args()
|
|
|
|
sim = StandaloneSimulation(
|
|
rover_pattern=args.pattern,
|
|
rover_speed=args.speed,
|
|
rover_amplitude=args.amplitude
|
|
)
|
|
sim.run()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|