704 lines
27 KiB
Python
704 lines
27 KiB
Python
import os
|
|
import base64
|
|
import json
|
|
import torch
|
|
import torchaudio
|
|
import numpy as np
|
|
import whisperx
|
|
from io import BytesIO
|
|
from typing import List, Dict, Any, Optional
|
|
from flask import Flask, request, send_from_directory, Response
|
|
from flask_cors import CORS
|
|
from flask_socketio import SocketIO, emit, disconnect
|
|
from generator import load_csm_1b, Segment
|
|
import time
|
|
import gc
|
|
from collections import deque
|
|
from threading import Lock
|
|
|
|
# Add these lines right after your imports
|
|
import torch
|
|
import os
|
|
|
|
# Handle CUDA issues
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Limit to first GPU only
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
# Set CUDA settings to avoid TF32 warnings
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
# Set compute type based on available hardware
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
compute_type = "float16" # Faster for CUDA
|
|
else:
|
|
device = "cpu"
|
|
compute_type = "int8" # Better for CPU
|
|
|
|
print(f"Using device: {device} with compute type: {compute_type}")
|
|
|
|
# Select device
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
print(f"Using device: {device}")
|
|
|
|
# Initialize the model
|
|
generator = load_csm_1b(device=device)
|
|
|
|
# Initialize WhisperX for ASR
|
|
print("Loading WhisperX model...")
|
|
try:
|
|
# Try to load a smaller model for faster response times
|
|
asr_model = whisperx.load_model("small", device, compute_type=compute_type)
|
|
print("WhisperX 'small' model loaded successfully")
|
|
except Exception as e:
|
|
print(f"Error loading 'small' model: {str(e)}")
|
|
try:
|
|
# Fall back to tiny model if small fails
|
|
asr_model = whisperx.load_model("tiny", device, compute_type=compute_type)
|
|
print("WhisperX 'tiny' model loaded as fallback")
|
|
except Exception as e2:
|
|
print(f"Error loading fallback model: {str(e2)}")
|
|
print("Trying CPU model as last resort")
|
|
# Last resort - try CPU
|
|
asr_model = whisperx.load_model("tiny", "cpu", compute_type="int8")
|
|
print("WhisperX loaded on CPU as last resort")
|
|
|
|
# Silence detection parameters
|
|
SILENCE_THRESHOLD = 0.01 # Adjust based on your audio normalization
|
|
SILENCE_DURATION_SEC = 1.0 # How long silence must persist
|
|
|
|
# Define the base directory
|
|
base_dir = os.path.dirname(os.path.abspath(__file__))
|
|
static_dir = os.path.join(base_dir, "static")
|
|
os.makedirs(static_dir, exist_ok=True)
|
|
|
|
# Setup Flask
|
|
app = Flask(__name__)
|
|
CORS(app)
|
|
socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet')
|
|
|
|
# Socket connection management
|
|
thread = None
|
|
thread_lock = Lock()
|
|
active_clients = {} # Map client_id to client context
|
|
|
|
# Helper function to convert audio data
|
|
def decode_audio_data(audio_data: str) -> torch.Tensor:
|
|
"""Decode base64 audio data to a torch tensor with improved error handling"""
|
|
try:
|
|
# Skip empty audio data
|
|
if not audio_data or len(audio_data) < 100:
|
|
print("Empty or too short audio data received")
|
|
return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence
|
|
|
|
# Extract the actual base64 content
|
|
if ',' in audio_data:
|
|
# Handle data URL format (data:audio/wav;base64,...)
|
|
audio_data = audio_data.split(',')[1]
|
|
|
|
# Decode base64 audio data
|
|
try:
|
|
binary_data = base64.b64decode(audio_data)
|
|
print(f"Decoded base64 data: {len(binary_data)} bytes")
|
|
|
|
# Check if we have enough data for a valid WAV
|
|
if len(binary_data) < 44: # WAV header is 44 bytes
|
|
print("Data too small to be a valid WAV file")
|
|
return torch.zeros(generator.sample_rate // 2)
|
|
except Exception as e:
|
|
print(f"Base64 decoding error: {str(e)}")
|
|
return torch.zeros(generator.sample_rate // 2)
|
|
|
|
# Save for debugging
|
|
debug_path = os.path.join(base_dir, "debug_incoming.wav")
|
|
with open(debug_path, 'wb') as f:
|
|
f.write(binary_data)
|
|
print(f"Saved debug file: {debug_path}")
|
|
|
|
# Approach 1: Load directly with torchaudio
|
|
try:
|
|
with BytesIO(binary_data) as temp_file:
|
|
temp_file.seek(0) # Ensure we're at the start of the buffer
|
|
audio_tensor, sample_rate = torchaudio.load(temp_file, format="wav")
|
|
print(f"Direct loading success: shape={audio_tensor.shape}, rate={sample_rate}Hz")
|
|
|
|
# Check if audio is valid
|
|
if audio_tensor.numel() == 0 or torch.isnan(audio_tensor).any():
|
|
raise ValueError("Empty or invalid audio tensor detected")
|
|
except Exception as e:
|
|
print(f"Direct loading failed: {str(e)}")
|
|
|
|
# Approach 2: Try to fix/normalize the WAV data
|
|
try:
|
|
# Sometimes WAV headers can be malformed, attempt to fix
|
|
temp_path = os.path.join(base_dir, "temp_fixing.wav")
|
|
with open(temp_path, 'wb') as f:
|
|
f.write(binary_data)
|
|
|
|
# Use a simpler numpy approach as backup
|
|
import numpy as np
|
|
import wave
|
|
|
|
try:
|
|
with wave.open(temp_path, 'rb') as wf:
|
|
n_channels = wf.getnchannels()
|
|
sample_width = wf.getsampwidth()
|
|
sample_rate = wf.getframerate()
|
|
n_frames = wf.getnframes()
|
|
|
|
# Read the frames
|
|
frames = wf.readframes(n_frames)
|
|
print(f"Wave reading: channels={n_channels}, rate={sample_rate}Hz, frames={n_frames}")
|
|
|
|
# Convert to numpy and then to torch
|
|
if sample_width == 2: # 16-bit audio
|
|
data = np.frombuffer(frames, dtype=np.int16).astype(np.float32) / 32768.0
|
|
elif sample_width == 1: # 8-bit audio
|
|
data = np.frombuffer(frames, dtype=np.uint8).astype(np.float32) / 128.0 - 1.0
|
|
else:
|
|
raise ValueError(f"Unsupported sample width: {sample_width}")
|
|
|
|
# Convert to mono if needed
|
|
if n_channels > 1:
|
|
data = data.reshape(-1, n_channels)
|
|
data = data.mean(axis=1)
|
|
|
|
# Convert to torch tensor
|
|
audio_tensor = torch.from_numpy(data)
|
|
print(f"Successfully converted with numpy: shape={audio_tensor.shape}")
|
|
except Exception as wave_error:
|
|
print(f"Wave processing failed: {str(wave_error)}")
|
|
# Try with torchaudio as last resort
|
|
audio_tensor, sample_rate = torchaudio.load(temp_path, format="wav")
|
|
|
|
# Clean up
|
|
if os.path.exists(temp_path):
|
|
os.remove(temp_path)
|
|
except Exception as e2:
|
|
print(f"All WAV loading methods failed: {str(e2)}")
|
|
print("Returning silence as fallback")
|
|
return torch.zeros(generator.sample_rate // 2)
|
|
|
|
# Ensure audio is the right shape (mono)
|
|
if len(audio_tensor.shape) > 1 and audio_tensor.shape[0] > 1:
|
|
audio_tensor = torch.mean(audio_tensor, dim=0)
|
|
|
|
# Ensure we have a 1D tensor
|
|
audio_tensor = audio_tensor.squeeze()
|
|
|
|
# Resample if needed
|
|
if sample_rate != generator.sample_rate:
|
|
try:
|
|
print(f"Resampling from {sample_rate}Hz to {generator.sample_rate}Hz")
|
|
resampler = torchaudio.transforms.Resample(
|
|
orig_freq=sample_rate,
|
|
new_freq=generator.sample_rate
|
|
)
|
|
audio_tensor = resampler(audio_tensor)
|
|
except Exception as e:
|
|
print(f"Resampling error: {str(e)}")
|
|
# If resampling fails, just return the original audio
|
|
# The model can often handle different sample rates
|
|
|
|
# Normalize audio to avoid issues
|
|
if torch.abs(audio_tensor).max() > 0:
|
|
audio_tensor = audio_tensor / torch.abs(audio_tensor).max()
|
|
|
|
print(f"Final audio tensor: shape={audio_tensor.shape}, min={audio_tensor.min().item():.4f}, max={audio_tensor.max().item():.4f}")
|
|
return audio_tensor
|
|
except Exception as e:
|
|
print(f"Unhandled error in decode_audio_data: {str(e)}")
|
|
# Return a small silent audio segment as fallback
|
|
return torch.zeros(generator.sample_rate // 2) # 0.5 seconds of silence
|
|
|
|
|
|
def encode_audio_data(audio_tensor: torch.Tensor) -> str:
|
|
"""Encode torch tensor audio to base64 string"""
|
|
buf = BytesIO()
|
|
torchaudio.save(buf, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate, format="wav")
|
|
buf.seek(0)
|
|
audio_base64 = base64.b64encode(buf.read()).decode('utf-8')
|
|
return f"data:audio/wav;base64,{audio_base64}"
|
|
|
|
|
|
def transcribe_audio(audio_tensor: torch.Tensor) -> str:
|
|
"""Transcribe audio using WhisperX"""
|
|
try:
|
|
# Save the tensor to a temporary file
|
|
temp_path = os.path.join(base_dir, "temp_audio.wav")
|
|
torchaudio.save(temp_path, audio_tensor.unsqueeze(0).cpu(), generator.sample_rate)
|
|
|
|
print(f"Transcribing audio file: {temp_path} (size: {os.path.getsize(temp_path)} bytes)")
|
|
|
|
# Load and transcribe the audio
|
|
audio = whisperx.load_audio(temp_path)
|
|
result = asr_model.transcribe(audio, batch_size=16)
|
|
|
|
# Clean up
|
|
if os.path.exists(temp_path):
|
|
os.remove(temp_path)
|
|
|
|
# Get the transcription text
|
|
if result["segments"] and len(result["segments"]) > 0:
|
|
# Combine all segments
|
|
transcription = " ".join([segment["text"] for segment in result["segments"]])
|
|
print(f"Transcription successful: '{transcription.strip()}'")
|
|
return transcription.strip()
|
|
else:
|
|
print("Transcription returned no segments")
|
|
return ""
|
|
except Exception as e:
|
|
print(f"Error in transcription: {str(e)}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
if os.path.exists("temp_audio.wav"):
|
|
os.remove("temp_audio.wav")
|
|
return ""
|
|
|
|
|
|
def generate_response(text: str, conversation_history: List[Segment]) -> str:
|
|
"""Generate a contextual response based on the transcribed text"""
|
|
# Simple response logic - can be replaced with a more sophisticated LLM in the future
|
|
responses = {
|
|
"hello": "Hello there! How are you doing today?",
|
|
"how are you": "I'm doing well, thanks for asking! How about you?",
|
|
"what is your name": "I'm Sesame, your voice assistant. How can I help you?",
|
|
"bye": "Goodbye! It was nice chatting with you.",
|
|
"thank you": "You're welcome! Is there anything else I can help with?",
|
|
"weather": "I don't have real-time weather data, but I hope it's nice where you are!",
|
|
"help": "I can chat with you using natural voice. Just speak normally and I'll respond.",
|
|
}
|
|
|
|
text_lower = text.lower()
|
|
|
|
# Check for matching keywords
|
|
for key, response in responses.items():
|
|
if key in text_lower:
|
|
return response
|
|
|
|
# Default responses based on text length
|
|
if not text:
|
|
return "I didn't catch that. Could you please repeat?"
|
|
elif len(text) < 10:
|
|
return "Thanks for your message. Could you elaborate a bit more?"
|
|
else:
|
|
return f"I understand you said '{text}'. That's interesting! Can you tell me more about that?"
|
|
|
|
# Flask routes for serving static content
|
|
@app.route('/')
|
|
def index():
|
|
return send_from_directory(base_dir, 'index.html')
|
|
|
|
@app.route('/favicon.ico')
|
|
def favicon():
|
|
if os.path.exists(os.path.join(static_dir, 'favicon.ico')):
|
|
return send_from_directory(static_dir, 'favicon.ico')
|
|
return Response(status=204)
|
|
|
|
@app.route('/voice-chat.js')
|
|
def voice_chat_js():
|
|
return send_from_directory(base_dir, 'voice-chat.js')
|
|
|
|
@app.route('/static/<path:path>')
|
|
def serve_static(path):
|
|
return send_from_directory(static_dir, path)
|
|
|
|
# Socket.IO event handlers
|
|
@socketio.on('connect')
|
|
def handle_connect():
|
|
client_id = request.sid
|
|
print(f"Client connected: {client_id}")
|
|
|
|
# Initialize client context
|
|
active_clients[client_id] = {
|
|
'context_segments': [],
|
|
'streaming_buffer': [],
|
|
'is_streaming': False,
|
|
'is_silence': False,
|
|
'last_active_time': time.time(),
|
|
'energy_window': deque(maxlen=10)
|
|
}
|
|
|
|
emit('status', {'type': 'connected', 'message': 'Connected to server'})
|
|
|
|
@socketio.on('disconnect')
|
|
def handle_disconnect():
|
|
client_id = request.sid
|
|
if client_id in active_clients:
|
|
del active_clients[client_id]
|
|
print(f"Client disconnected: {client_id}")
|
|
|
|
@socketio.on('generate')
|
|
def handle_generate(data):
|
|
client_id = request.sid
|
|
if client_id not in active_clients:
|
|
emit('error', {'message': 'Client not registered'})
|
|
return
|
|
|
|
try:
|
|
text = data.get('text', '')
|
|
speaker_id = data.get('speaker', 0)
|
|
|
|
print(f"Generating audio for: '{text}' with speaker {speaker_id}")
|
|
|
|
# Generate audio response
|
|
audio_tensor = generator.generate(
|
|
text=text,
|
|
speaker=speaker_id,
|
|
context=active_clients[client_id]['context_segments'],
|
|
max_audio_length_ms=10_000,
|
|
)
|
|
|
|
# Add to conversation context
|
|
active_clients[client_id]['context_segments'].append(
|
|
Segment(text=text, speaker=speaker_id, audio=audio_tensor)
|
|
)
|
|
|
|
# Convert audio to base64 and send back to client
|
|
audio_base64 = encode_audio_data(audio_tensor)
|
|
emit('audio_response', {
|
|
'type': 'audio_response',
|
|
'audio': audio_base64
|
|
})
|
|
|
|
except Exception as e:
|
|
print(f"Error generating audio: {str(e)}")
|
|
emit('error', {
|
|
'type': 'error',
|
|
'message': f"Error generating audio: {str(e)}"
|
|
})
|
|
|
|
@socketio.on('add_to_context')
|
|
def handle_add_to_context(data):
|
|
client_id = request.sid
|
|
if client_id not in active_clients:
|
|
emit('error', {'message': 'Client not registered'})
|
|
return
|
|
|
|
try:
|
|
text = data.get('text', '')
|
|
speaker_id = data.get('speaker', 0)
|
|
audio_data = data.get('audio', '')
|
|
|
|
# Convert received audio to tensor
|
|
audio_tensor = decode_audio_data(audio_data)
|
|
|
|
# Add to conversation context
|
|
active_clients[client_id]['context_segments'].append(
|
|
Segment(text=text, speaker=speaker_id, audio=audio_tensor)
|
|
)
|
|
|
|
emit('context_updated', {
|
|
'type': 'context_updated',
|
|
'message': 'Audio added to context'
|
|
})
|
|
|
|
except Exception as e:
|
|
print(f"Error adding to context: {str(e)}")
|
|
emit('error', {
|
|
'type': 'error',
|
|
'message': f"Error processing audio: {str(e)}"
|
|
})
|
|
|
|
@socketio.on('clear_context')
|
|
def handle_clear_context():
|
|
client_id = request.sid
|
|
if client_id in active_clients:
|
|
active_clients[client_id]['context_segments'] = []
|
|
|
|
emit('context_updated', {
|
|
'type': 'context_updated',
|
|
'message': 'Context cleared'
|
|
})
|
|
|
|
@socketio.on('stream_audio')
|
|
def handle_stream_audio(data):
|
|
client_id = request.sid
|
|
if client_id not in active_clients:
|
|
emit('error', {'message': 'Client not registered'})
|
|
return
|
|
|
|
client = active_clients[client_id]
|
|
|
|
try:
|
|
speaker_id = data.get('speaker', 0)
|
|
audio_data = data.get('audio', '')
|
|
|
|
# Convert received audio to tensor
|
|
audio_chunk = decode_audio_data(audio_data)
|
|
|
|
# Start streaming mode if not already started
|
|
if not client['is_streaming']:
|
|
client['is_streaming'] = True
|
|
client['streaming_buffer'] = []
|
|
client['energy_window'].clear()
|
|
client['is_silence'] = False
|
|
client['last_active_time'] = time.time()
|
|
print(f"[{client_id}] Streaming started with speaker ID: {speaker_id}")
|
|
emit('streaming_status', {
|
|
'type': 'streaming_status',
|
|
'status': 'started'
|
|
})
|
|
|
|
# Calculate audio energy for silence detection
|
|
chunk_energy = torch.mean(torch.abs(audio_chunk)).item()
|
|
client['energy_window'].append(chunk_energy)
|
|
avg_energy = sum(client['energy_window']) / len(client['energy_window'])
|
|
|
|
# Check if audio is silent
|
|
current_silence = avg_energy < SILENCE_THRESHOLD
|
|
|
|
# Track silence transition
|
|
if not client['is_silence'] and current_silence:
|
|
# Transition to silence
|
|
client['is_silence'] = True
|
|
client['last_active_time'] = time.time()
|
|
elif client['is_silence'] and not current_silence:
|
|
# User started talking again
|
|
client['is_silence'] = False
|
|
|
|
# Add chunk to buffer regardless of silence state
|
|
client['streaming_buffer'].append(audio_chunk)
|
|
|
|
# Check if silence has persisted long enough to consider "stopped talking"
|
|
silence_elapsed = time.time() - client['last_active_time']
|
|
|
|
if client['is_silence'] and silence_elapsed >= SILENCE_DURATION_SEC and len(client['streaming_buffer']) > 0:
|
|
# User has stopped talking - process the collected audio
|
|
print(f"[{client_id}] Processing audio after {silence_elapsed:.2f}s of silence")
|
|
|
|
full_audio = torch.cat(client['streaming_buffer'], dim=0)
|
|
|
|
# Process with WhisperX speech-to-text
|
|
print(f"[{client_id}] Starting transcription with WhisperX...")
|
|
transcribed_text = transcribe_audio(full_audio)
|
|
|
|
# Log the transcription
|
|
print(f"[{client_id}] Transcribed text: '{transcribed_text}'")
|
|
|
|
# Handle the transcription result
|
|
if transcribed_text:
|
|
# Add user message to context
|
|
user_segment = Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
|
client['context_segments'].append(user_segment)
|
|
|
|
# Send the transcribed text to client
|
|
emit('transcription', {
|
|
'type': 'transcription',
|
|
'text': transcribed_text
|
|
})
|
|
|
|
# Generate a contextual response
|
|
response_text = generate_response(transcribed_text, client['context_segments'])
|
|
print(f"[{client_id}] Generating audio response: '{response_text}'")
|
|
|
|
# Let the client know we're processing
|
|
emit('processing_status', {
|
|
'type': 'processing_status',
|
|
'status': 'generating_audio',
|
|
'message': 'Generating audio response...'
|
|
})
|
|
|
|
# Generate audio for the response
|
|
try:
|
|
# Use a different speaker than the user
|
|
ai_speaker_id = 1 if speaker_id == 0 else 0
|
|
|
|
# Start audio generation with streaming (chunk by chunk)
|
|
audio_chunks = []
|
|
|
|
# This version tries to stream the audio generation in smaller chunks
|
|
# Note: CSM model doesn't natively support incremental generation,
|
|
# so we're simulating it here for a more responsive UI experience
|
|
|
|
# Generate the full response
|
|
audio_tensor = generator.generate(
|
|
text=response_text,
|
|
speaker=ai_speaker_id,
|
|
context=client['context_segments'],
|
|
max_audio_length_ms=10_000,
|
|
)
|
|
|
|
# Add response to context
|
|
ai_segment = Segment(
|
|
text=response_text,
|
|
speaker=ai_speaker_id,
|
|
audio=audio_tensor
|
|
)
|
|
client['context_segments'].append(ai_segment)
|
|
|
|
# Convert audio to base64 and send back to client
|
|
audio_base64 = encode_audio_data(audio_tensor)
|
|
emit('audio_response', {
|
|
'type': 'audio_response',
|
|
'text': response_text,
|
|
'audio': audio_base64
|
|
})
|
|
|
|
print(f"[{client_id}] Audio response sent: {len(audio_base64)} bytes")
|
|
|
|
except Exception as gen_error:
|
|
print(f"Error generating audio response: {str(gen_error)}")
|
|
emit('error', {
|
|
'type': 'error',
|
|
'message': "Sorry, there was an error generating the audio response."
|
|
})
|
|
else:
|
|
# If transcription failed, send a generic response
|
|
emit('error', {
|
|
'type': 'error',
|
|
'message': "Sorry, I couldn't understand what you said. Could you try again?"
|
|
})
|
|
|
|
# Clear buffer and reset silence detection
|
|
client['streaming_buffer'] = []
|
|
client['energy_window'].clear()
|
|
client['is_silence'] = False
|
|
client['last_active_time'] = time.time()
|
|
|
|
# If buffer gets too large without silence, process it anyway
|
|
elif len(client['streaming_buffer']) >= 30: # ~6 seconds of audio at 5 chunks/sec
|
|
print(f"[{client_id}] Processing long audio segment without silence")
|
|
full_audio = torch.cat(client['streaming_buffer'], dim=0)
|
|
|
|
# Process with WhisperX speech-to-text
|
|
transcribed_text = transcribe_audio(full_audio)
|
|
|
|
if transcribed_text:
|
|
client['context_segments'].append(
|
|
Segment(text=transcribed_text, speaker=speaker_id, audio=full_audio)
|
|
)
|
|
|
|
# Send the transcribed text to client
|
|
emit('transcription', {
|
|
'type': 'transcription',
|
|
'text': transcribed_text + " (processing continued speech...)"
|
|
})
|
|
|
|
# Keep half of the buffer for context (sliding window approach)
|
|
half_point = len(client['streaming_buffer']) // 2
|
|
client['streaming_buffer'] = client['streaming_buffer'][half_point:]
|
|
|
|
except Exception as e:
|
|
import traceback
|
|
traceback.print_exc()
|
|
print(f"Error processing streaming audio: {str(e)}")
|
|
emit('error', {
|
|
'type': 'error',
|
|
'message': f"Error processing streaming audio: {str(e)}"
|
|
})
|
|
|
|
@socketio.on('stop_streaming')
|
|
def handle_stop_streaming(data):
|
|
client_id = request.sid
|
|
if client_id not in active_clients:
|
|
return
|
|
|
|
client = active_clients[client_id]
|
|
client['is_streaming'] = False
|
|
|
|
if client['streaming_buffer'] and len(client['streaming_buffer']) > 5:
|
|
# Process any remaining audio in the buffer
|
|
full_audio = torch.cat(client['streaming_buffer'], dim=0)
|
|
|
|
# Process with WhisperX speech-to-text
|
|
transcribed_text = transcribe_audio(full_audio)
|
|
|
|
if transcribed_text:
|
|
client['context_segments'].append(
|
|
Segment(text=transcribed_text, speaker=data.get("speaker", 0), audio=full_audio)
|
|
)
|
|
|
|
# Send the transcribed text to client
|
|
emit('transcription', {
|
|
'type': 'transcription',
|
|
'text': transcribed_text
|
|
})
|
|
|
|
client['streaming_buffer'] = []
|
|
emit('streaming_status', {
|
|
'type': 'streaming_status',
|
|
'status': 'stopped'
|
|
})
|
|
|
|
def stream_audio_to_client(client_id, audio_tensor, text, speaker_id, chunk_size_ms=500):
|
|
"""Stream audio to client in chunks to simulate real-time generation"""
|
|
try:
|
|
if client_id not in active_clients:
|
|
print(f"Client {client_id} not found for streaming")
|
|
return
|
|
|
|
# Calculate chunk size in samples
|
|
chunk_size = int(generator.sample_rate * chunk_size_ms / 1000)
|
|
total_chunks = math.ceil(audio_tensor.size(0) / chunk_size)
|
|
|
|
print(f"Streaming audio in {total_chunks} chunks of {chunk_size_ms}ms each")
|
|
|
|
# Send initial response with text but no audio yet
|
|
socketio.emit('audio_response_start', {
|
|
'type': 'audio_response_start',
|
|
'text': text,
|
|
'total_chunks': total_chunks
|
|
}, room=client_id)
|
|
|
|
# Stream each chunk
|
|
for i in range(total_chunks):
|
|
start_idx = i * chunk_size
|
|
end_idx = min(start_idx + chunk_size, audio_tensor.size(0))
|
|
|
|
# Extract chunk
|
|
chunk = audio_tensor[start_idx:end_idx]
|
|
|
|
# Encode chunk
|
|
chunk_base64 = encode_audio_data(chunk)
|
|
|
|
# Send chunk
|
|
socketio.emit('audio_response_chunk', {
|
|
'type': 'audio_response_chunk',
|
|
'chunk_index': i,
|
|
'total_chunks': total_chunks,
|
|
'audio': chunk_base64,
|
|
'is_last': i == total_chunks - 1
|
|
}, room=client_id)
|
|
|
|
# Brief pause between chunks to simulate streaming
|
|
time.sleep(0.1)
|
|
|
|
# Send completion message
|
|
socketio.emit('audio_response_complete', {
|
|
'type': 'audio_response_complete',
|
|
'text': text
|
|
}, room=client_id)
|
|
|
|
print(f"Audio streaming complete: {total_chunks} chunks sent")
|
|
|
|
except Exception as e:
|
|
print(f"Error streaming audio to client: {str(e)}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
|
|
if __name__ == "__main__":
|
|
print(f"\n{'='*60}")
|
|
print(f"🔊 Sesame AI Voice Chat Server (Flask Implementation)")
|
|
print(f"{'='*60}")
|
|
print(f"📡 Server Information:")
|
|
print(f" - Local URL: http://localhost:5000")
|
|
print(f" - Network URL: http://<your-ip-address>:5000")
|
|
print(f" - WebSocket: ws://<your-ip-address>:5000/socket.io")
|
|
print(f"{'='*60}")
|
|
print(f"💡 To make this server public:")
|
|
print(f" 1. Ensure port 5000 is open in your firewall")
|
|
print(f" 2. Set up port forwarding on your router to port 5000")
|
|
print(f" 3. Or use a service like ngrok with: ngrok http 5000")
|
|
print(f"{'='*60}")
|
|
print(f"🌐 Device: {device.upper()}")
|
|
print(f"🧠 Models loaded: Sesame CSM + WhisperX ({asr_model.device})")
|
|
print(f"🔧 Serving from: {os.path.join(base_dir, 'index.html')}")
|
|
print(f"{'='*60}")
|
|
print(f"Ready to receive connections! Press Ctrl+C to stop the server.\n")
|
|
|
|
socketio.run(app, host="0.0.0.0", port=5000, debug=False) |